Preview

Astrakhan medical journal

Advanced search
Open Access Open Access  Restricted Access Subscription Access

NOVEL APPROACH FOR ISOLATION OF LYTIC BACTERIOPHAGES AGAINST STAPHYLOCOCCUS AUREUS

https://doi.org/10.17021/2020.15.4.8.15

Abstract

Strictly lytic or virulent bacteriophages against Staphylococcus aureus belong to order Caudovirales and comprise predominantly two genera: Kayvirus and Rosenblumvirus. Representatives of both taxonomic groups are well known as safe and viable antibacterial agents. Phages of the genus Kayvirus show usually a broad host range activity against clinical isolates of S. aureus. Nevertheless continuous isolation of new phages against these bacteria is required in order to provide sufficient activity for therapy of biofilms or to prevent phage inactivation by neutralizing antibodies. In the present study, we describe an approach for isolation of lytic bacteriophages of the genus Kayvirus by mitomycin C induction of clinical isolates of S. aureus. Our findings suggest the clinical isolates of S. aureus a reach source for lytic bacteriophages. However taking into account the inducibility of the Kayvirus representatives it have to be evaluated a presence of further unknown life cycles for these bacteriophages such as pseudolysogeny.

About the Authors

E. O. Rubalskii
Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School; Laboratory of Applied Immunochemistry, G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology
Russian Federation


O. A. Bashkina
Astrakhan State Medical University
Russian Federation


A. Haverich
Department of Cardiothoracic, Transplantation and Vascular Surgery; Hannover Medical School
Russian Federation


A. V. Aleshkin
Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages, G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology
Russian Federation


M. A. Samotrueva
Astrakhan State Medical University
Russian Federation


E. A. Popov
Astrakhan State Medical University
Russian Federation


C. Kuehn
Cardiothoracic and Transplant Surgeon, Consultant, Leading Surgeon of Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School
Russian Federation


R. O. Abdrakhmanova
Astrakhan State Medical University
Russian Federation


E. G. Dosmukhanova
Astrakhan State Medical University
Russian Federation


S. Ruemke
Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School
Russian Federation


C. Salmoukas
Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School
Russian Federation


M. O. Rubalsky
City Diagnostic Laboratory
Russian Federation


References

1. Abedon, S. T. Phage therapy: eco-physiological pharmacology. Scientifica, 2014, vol. 2014, article ID 581639. doi: 10.1155/2014/581639.

2. Abedon, S. T. Bacteriophage exploitation of bacterial biofilms: Phage preference for less mature targets? FEMS microbiology letters, 2016, vol. 363, no. 3, PII fnv246. doi: 10.1093/femsle/fnv246.

3. Aleshkin A. V., Ershova O. N., Volozhantsev N. V. , Svetoch E. A., Popova A. V., Rubalskii E. O., Borzilov A. I., Aleshkin V. A. , Afanas'ev S. S., Karaulov A. V., Galimzyanov K. M., Rubalsky O. V., Bochkareva S. S.. Phagebiotics in treatment and prophylaxis of healthcare-associated infections. Bacteriophage, 2016, vol. 6, no. 4, e1251379. doi: 10.1080/21597081.2016.1251379.

4. Bai J., Kim Y. T., Ryu S., Lee J. H. Biocontrol and rapid detection of food-borne pathogens using bacteriophages and endolysins. Frontiers in microbiology, 2016, vol. 7, article 474. doi: 10.3389/fmicb.2016.00474.

5. Billard-Pomares T., Fouteau S., Jacquet M. E., Roche D., Barbe V., Castellanos M., Bouet J. Y., Cruveiller S., Médigue C., Blanco J., Clermont O., Denamur E., Branger C. Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrobial Agents Chemotherapy, 2014, vol. 58 (11), p. 6550-6557. doi: 10.1128/AAC.03183-14.

6. Bochkareva S. S., Aleshkin A. V., Ershova O. N., Novikova L. I., Karaulov A. V., Kiseleva I. A., Zul’karneev E. R., Rubal’skiy E. O., Zeigarnik M. V. Anti-phage аntibody response in phage therapy against healthcare-associated infections (HAIs). Infectious diseases, 2017, vol. 15, no. 1, pp. 35-40. doi: 10.20953/1729-9225-2017-1-35-40.

7. Bondy-Denomy J., Qian J., Westra E. R., Buckling A., Guttman D. S., Davidson A. R., Maxwell K. L. Prophages mediate defense against phage infection through diverse mechanisms. The ISME journal, 2016, vol. 10, no. 12, pp. 2854-2866. doi: 10.1038/ismej.2016.79.

8. Cavalcanti V. P., de Camargo L. A., Moura F. S., de Melo Fernandes E. J. Staphylococcus aureus in tonsils of patients with recurrent tonsillitis: prevalence, susceptibility profile, and genotypic characterization. Brazilian Journal of Infectious Diseases, 2019, vol. 23, no. 1, pp. 8-14. doi: 10.1016/j.bjid.2018.12.003.

9. Głowacka-Rutkowska A., Gozdek A., Empel J., Gawor J., Żuchniewicz K., Kozińska A., Dębski J., Gromadka R., Łobocka M. The ability of lytic staphylococcal Podovirus vB_SauP_phiAGO1.3 to coexist in equilibrium with its host facilitates the selection of host mutants of attenuated virulence but does not preclude the phage antistaphylococcal activity in a nematode infection model. Frontiers in microbiology, 2019, vol. 9, article 3227. doi:10.3389/fmicb.2018.03227.

10. Głowacka-Rutkowska A, Ulatowska M, Empel J, Kowalczyk M, Boreczek J, Łobocka M. A Kayvirus distant homolog of staphylococcal virulence determinants and VISA biomarker is a phage lytic enzyme. Viruses, 2020, vol. 12, no. 3, p. 292. doi:10.3390/v12030292.

11. Goerke C., Pantucek R., Holtfreter S., Schulte B., Zink M., Grumann D., Bröker B. M., Doskar J., Wolz C. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. Journal of bacteriology, 2009, vol. 191, no. 11, pp. 3462-3468. doi:10.1128/JB.01804-08.

12. Krahn T., Wibberg D., Maus I., Winkler A., Bontron S., Sczyrba A., Nordmann P., Pühler A., Poirel L., Schlüter A. Intraspecies transfer of the chromosomally encoded Acinetobacter baumannii blaNDM-1 carbapenemase gene. Antimicrobial Agents Chemotherapy, 2016, vol. 60 (5), pp. 3032-3040. doi: 10.1128/AAC.00124-16.

13. Kutter E., Sulakvelidze A. Bacteriophages: biology and applications. Boca Raton, London, New York, Washington: CRC Press, 2005, 510 p.

14. Levin-Reisman I., Ronin I., Gefen O., Braniss I., Shoresh N., Balaban N. Q. Antibiotic tolerance facilitates the evolution of resistance. Science (New York, N.Y.), 2017, vol. 355, no. 6327, pp. 826-830. doi:10.1126/science.aaj2191.

15. McCarthy A. J., Witney A. A., Lindsay J. A. Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated. Frontiers in cellular and infection microbiology, 2012, vol. 2, article 6. doi: 10.3389/fcimb.2012.00006.

16. Miller-Ensminger T., Garretto A., Brenner J., Thomas-White K., Zambom A., Wolfe A. J., Putonti C. Bacteriophages of the urinary microbiome. Journal Bacteriological, 2018, vol. 200, no. 7, e00738-17. doi: 10.1128/JB.00738-17.

17. Oduor J. M. O., Kiljunen S., Kadija E., Mureithi M. W., Nyachieo A., Skurnik M. Genomic characterization of four novel Staphylococcus myoviruses. Archives of virology, 2019 vol. 164, no. 8, pp. 2171-2173. doi: 10.1007/s00705-019-04267-0.

18. O'Flaherty S., Coffey A., Edwards R., Meaney W., Fitzgerald G. F., Ross R. P. Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. Journal of bacteriology, 2004, vol. 186, no. 9, pp. 2862-2871. doi:10.1128/jb.186.9.2862-2871.2004.

19. Sekizuka T., Yamamoto A., Komiya T., Kenri T., Takeuchi F., Shibayama K., Takahashi M., Kuroda M., Iwaki M. Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage. BMC Microbiology, 2012, vol. 12, Article number: 72. doi: 10.1186/1471-2180-12-72.

20. Stepanović S., Vukovic D. N., Dakic I. R., Savic B., Svabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods, 2000, vol. 40, no. 2, pp. 175-179. doi: 10.1016/s0167-7012(00)00122-6.

21. Stewart P. S. Antimicrobial tolerance in biofilms. Microbiology spectrum, 2015, vol. 3, no. 3. doi: 10.1128/microbiolspec.MB-0010-2014.

22. Umminger J., Krueger H., Beckmann E., Kaufeld T., Fleissner F., Haverich A., Shrestha M., Martens A. Management of early graft infections in the ascending aorta and aortic arch: a comparison between graft replacement and graft preservation techniques. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery, 2016, vol. 50, no. 4, pp. 660-667. doi: 10.1093/ejcts/ezw150.


Review

For citations:


Rubalskii E.O., Bashkina O.A., Haverich A., Aleshkin A.V., Samotrueva M.A., Popov E.A., Kuehn C., Abdrakhmanova R.O., Dosmukhanova E.G., Ruemke S., Salmoukas C., Rubalsky M.O. NOVEL APPROACH FOR ISOLATION OF LYTIC BACTERIOPHAGES AGAINST STAPHYLOCOCCUS AUREUS. Astrakhan medical journal. 2020;15(4):8-15. (In Russ.) https://doi.org/10.17021/2020.15.4.8.15

Views: 131


ISSN 1992-6499 (Print)