Preview

Astrakhan medical journal

Advanced search

MYCOBACTERIOSIS IN PATIENTS WITH CYSTIC FIBROSIS: THE CAUSE OR EFFECT OF MICROECOLOGICAL CHANGES IN THE BRONCHOPULMONARY SYSTEM

https://doi.org/10.17021/2020.15.1.57.65

Abstract

This review article provides relevant data on the state of the microbiological biocenosis of the bronchopulmonary system in patients with cystic fibrosis. The main etiopathogenetic links of the development of the pathological process in cystic fibrosis are reflected, the main pathogens of bacterial complications are described. Besides, the characteristics of the microbial landscape of the lung tissue with the indicated congenital genetic pathology are characterized, the relationship of possible infectious complications with the existing background pathological process is shown. The role of iron as a factor is described, on the one hand, exacerbating the course of the infectious process, and on the other, allowing explaining the emerging microecological disturbances arising from mixed infections with cystic fibrosis, leading to the development of serious, often life-threatening complications. The fundamental biochemical processes that regulate the delivery of iron to microbial cells are described, as well as possible new therapeutic approaches to combat infectious complications that can further improve the prognosis of the course of the underlying disease for this group of patients, are presented.

About the Authors

A. V. Kozlov
Samara State Medical University
Russian Federation


A. V. Lyamin
Samara State Medical University
Russian Federation


O. V. Kondratenko
Samara State Medical University
Russian Federation


O. A. Gusyakova
Samara State Medical University
Russian Federation


A. V. Zhestkov
Samara State Medical University
Russian Federation


D. D. Ismatullin
Samara State Medical University
Russian Federation


A. V. Khaliulin
Samara State Medical University
Russian Federation


References

1. Ларионова, Е. Е. Микробиологическая диагностика сопутствующей микобактериальной инфекции при кистозном фиброзе (муковисцидозе) / Е. Е. Ларионова, И. Ю. Андриевская, С. Н. Андреевская, Т. Г. Смирнова, Л. Н. Черноусова // Уральский медицинский журнал. - 2018. - № 8. - С. 65-68. doi: 10.25694/URMJ.2018.05.54.

2. Соломай, Т. В. Эпидемиологические особенности микобактериозов, вызванных нетуберкулезными микобактериями / Т. В. Соломай // Санитарный врач. - 2015. - № 3. - С. 30-36.

3. Эргешов, А. Э. Нетуберкулезные микобактерии у пациентов с заболеваниями органов дыхания (клинико-лабораторное исследование) / А. Э. Эргешов, Е. И. Шмелев, М. Н. Ковалевская, Е. Е. Ларионова, Л. Н. Черноусова // Пульмонология. - 2016. - Т. 26, № 3. - С. 303-308.

4. Agoro, R. Iron Supplementation Therapy, A Friend and Foe of Mycobacterial Infections? / R. Agoro, C. Mura // Pharmaceuticals (Basel, Switzerland). - 2019. - Vol. 12, № 2. - P. 75. doi: 10.3390/ph12020075.

5. Alcolea-Medina, A. An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (Matrix-Assisted Laser Desorption- Ionization mass spectrometry) / A. Alcolea-Medina, M. T. C. Fernandez, N. Montiel, M. P. L. García, C. D. Sevilla, N. North, M. J. M. Lirola, M. Wilks // Scientific reports. - 2019. - Vol. 9, № 1. - P. 20216. doi: 10.1038/s41598-019-56604-7.

6. Asmar, S. Inverse correlation between salt tolerance and host-adaptation in mycobacteria / S. Asmar, M. Sassi, M. Phelippeau, M. Drancourt // BMC Research Notes. - 2016. - Vol. 9. - P. 249. doi: 10.1186/s13104-016-2054-y.

7. Chin, K. L. Pulmonary non-tuberculous mycobacterial infections : current state and future management / K. L. Chin, M. E. Sarmiento, N. Alvarez-Cabrera, M. N. Norazmi, A. Acosta // European Journal of Clinical Microbiology & Infectious Diseases. 2019. doi: 10.1007/s10096-019-03771-0.

8. De Voss, J. J. Iron acquisition and metabolism by mycobacteria / J. J. De Voss, K. Rutter, B. G. Schroeder, C. E. Barry 3rd. // Journal of Bacteriology. - 1999. - Vol. 181, № 15. - P. 4443-4451.

9. De Voss, J. J. The salicylate-derived mycobactinsiderophores of Mycobacterium tuberculosis are essential for growth in macrophages / J. J. De Voss, K. Rutter, B. G. Schroeder, H. Su, Y. Zhu, C. E. Barry 3rd. // Proceedings of the National Academy of Sciences of the United States of America. - 2000. - Vol. 97, № 3. - P. 1252-1257. doi: 10.1073/pnas.97.3.1252.

10. Degiacomi, G. Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients / G. Degiacomi, J. C. Sammartino, L. R. Chiarelli, O. Riabova, V. Makarov, M. R. Pasca // International journal of molecular sciences. - 2019. - Vol. 20, № 23. - P. 5868.

11. Floto, R. A. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis / R. A. Floto, K. N. Olivier, L. Saiman, C. L. Daley, J. L. Herrmann, J. A. Nick, P. G. Noone, D. Bilton, P. Corris, R. L. Gibson, S. E. Hempstead, K. Koetz, K. A. Sabadosa, I. Sermet-Gaudelus, A. R. Smyth, J. van Ingen, R. J. Wallace, K. L. Winthrop, B. C. Marshall, C. S. Haworth // Thorax. - 2016. - Vol. 71. - P. 1-22.

12. Friedman, D. Z. P. Non-tuberculous mycobacteria in lung transplant recipients : prevalence, risk factors, and impact on survival and chronic lung allograft dysfunction / D. Z. P. Friedman, C. Cervera, K. Halloran, G. Tyrrell, K. Doucette // Transplant infectious disease. - 2019. - Р. e13229. doi: 10.1111/tid.13229.

13. Holmes, M. A. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration / M. A. Holmes, W. Paulsene, X. Jide, C. Ratledge, R. K. Strong // Structure. - 2005. - Vol. 13, № 1. - P. 29-41. doi: 10.1016/j.str.2004.10.009.

14. Khare, G. Differential Roles of Iron Storage Proteins in Maintaining the Iron Homeostasis in Mycobacterium tuberculosis / G. Khare, P. Nangpal, A. K. Tyagi // PLoS ONE. - 2017. - Vol. 12, № 1. - Р. e0169545. doi: 10.1371/journal.pone.0169545.

15. Khatri, B. High throughput phenotypic analysis of Mycobacterium tuberculosis and Mycobacterium bovis strains' metabolism using biolog phenotype microarrays / B. Khatri, M. Fielder, G. Jones, W. Newell, M. Abu-Oun, P. R. Wheeler // PLoS ONE. - 2013. - Vol. 8, № 1. - P. e52673. doi: 10.1371/journal.pone.0052673.

16. Lamb, A. L. Breaking a pathogen's iron will : Inhibiting siderophore production as an antimicrobial strategy / A. L. Lamb // Biochimica et biophysica acta. - 2015. - Vol. 1854, № 8 - P. 1054-1070. doi: 10.1016/j.bbapap.2015.05.001.

17. Lu, M. Disease caused by non-tuberculous mycobacteria in children with cystic fibrosis / M. Lu, V. Saddi, P. N. Britton, H. Selvadurai, P. D. Robinson, C. Pandit, B. J. Marais, D. A. Fitzgerald // Paediatric Respiratory Reviews. - 2019. - Vol. 29. - P. 42-52. doi: 10.1016/j.prrv.2018.05.001.

18. Martineau, A. R. Neutrophil-mediated innate immune resistance to mycobacteria / A. R. Martineau, S. M. Newton, K. A. Wilkinson, B. Kampmann, B. M. Hall, N. Nawroly, G. E. Packe, R. N. Davidson, C. J. Griffiths, R. J. Wilkinson // The Journal of clinical investigation. - 2007. - Vol. 117, № 7. - P. 1988-94. doi: 10.1172/JCI31097.

19. Nairz, M. The struggle for iron a metal at the host-pathogen interface / M. Nairz, A. Schroll, T. Sonnweber, G. Weiss // Cellular Microbiology. - 2010. - Vol. 12, № 12. - P.1691-1702. doi: 10.1111/j.1462-5822.2010.01529.x.

20. Nicolas, G. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation / G. Nicolas, C. Chauvet, L. Viatte, J. L. Danan, X. Bigard, I. Devaux, C. Beaumont, A. Kahn, S. Vaulont // The Journal of clinical investigation. - 2002. - Vol. 110, № 7. - P. 1037-1044. doi: 10.1172/JCI15686.

21. Pigeon, C. New mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload / C. Pigeon, G. Ilyin, B. Courselaud, P. Leroyer, B. Turlin, P. Brissot, O. A. Loréal // The Journal of Biological Chemistry. - 2001. - Vol. 276, № 11. - P. 7811-7819. doi:10.1074/jbc.M008923200.

22. Qvist, T. Comparing the harmful effects of nontuberculous mycobacteria and Gram negative bacteria on lung function in patients with cystic fibrosis / T. Qvist, D. Taylor-Robinson, E. Waldmann, H. V. Olesen, C. R. Hansen, I. H. Mathiesen, N. Høiby, T. L. Katzenstein, R. L. Smyth, P. J. Diggle, T. Pressler // Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society. - 2016. - Vol. 15, № 3. - P. 380-385. doi:10.1016/j.jcf.2015.09.007.

23. Reddy, P. Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection / P. Reddy, R. V. Puri, A. Khera, A. K. Tyagi // Journal of bacteriology. - 2012. - Vol. 194, № 3. - P. 567-575. doi: 10.1128/JB.05553-11.

24. Sritharan, M. Iron homeostasis in Mycobacterium tuberculosis : mechanistic insights into siderophore-mediated iron uptake / M. Sritharan // Journal of bacteriology. - 2016. - Vol. 198, № 18. - P. 2399-2409. doi: 10.1128/JB.00359-16.

25. Stites, S. W. Increased iron and ferritin content of sputum from patients with cystic fibrosis or chronic bronchitis / S. W. Stites, B. Walters, A. R. O'Brien-Ladner, K. Bailey, L. J. Wesselius // Chest. - 1998. - Vol. 114, № 3. - P. 814-819.

26. Thomas, M. S. Iron acquisition mechanisms of the Burkholderia cepacia complex / M. S. Thomas // Biometals. - 2007. - Vol. 20, № 3-4. - P. 431-452. doi:10.1007/s10534-006-9065-4.

27. Tullius, M. V. Discovery and characterization of a unique mycobacterial heme acquisition system / M. V. Tullius, C. A. Harmston, C. P. Owens, N. Chim, R. P. Morse, L. M. McMath, A. Iniguez, J. M. Kimmey, M. R. Sawaya, J. P. Whitelegge, M. A. Horwitz, C. W. Goulding // Proceedings of the National Academy of Sciences of the United States of America. - 2011. - Vol. 108, № 12. - P. 5051-5056. doi:10.1073/pnas.1009516108.

28. Wiens, J. R. Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa / J. R. Wiens, A. I. Vasil, M. J. Schurr, M. L. Vasil // MBio. - 2014. - Vol. 5, № 1. - e01010-13. doi: 10.1128/mBio.01010-13.

29. Wilschanski, M. Novel Therapeutic Approaches for Cystic Fibrosis / M. Wilschanski // Discovery medicine. - 2013. - Vol. 15, № 81. - P. 127-133.

30. Wolz, C. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa / C. Wolz, K. Hohloch, A. Ocaktan, K. Poole, R. W. Evans N. Rochel, A. M. Albrecht-Gary, M. A. Abdallah, G. Döring // Infection and Immunity. - 1994. - Vol. 62, № 9. - P. 4021-4027.


Review

For citations:


Kozlov A.V., Lyamin A.V., Kondratenko O.V., Gusyakova O.A., Zhestkov A.V., Ismatullin D.D., Khaliulin A.V. MYCOBACTERIOSIS IN PATIENTS WITH CYSTIC FIBROSIS: THE CAUSE OR EFFECT OF MICROECOLOGICAL CHANGES IN THE BRONCHOPULMONARY SYSTEM. Astrakhan medical journal. 2020;15(1):57-65. (In Russ.) https://doi.org/10.17021/2020.15.1.57.65

Views: 175


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-6499 (Print)