Investigation of antimicrobial activity of probiotic strain Streptococcus salivarius
https://doi.org/10.17021/1992-6499-2025-4-84-92
Abstract
Antibiotics in the treatment of diseases of Antibiotics in the treatment of oral cavity diseases lead to bacterial multidrug resistance, so it is necessary to search for alternative methods of treatment. A promising direction is the use of probiotics with antimicrobial potential. The aim of the study was to evaluate the antimicrobial activity of probiotic strain Streptococcus salivarius M18 against strains of Escherichia coli, Staphylococcus aureus depending on the cultivation medium. Materials and Methods. Growth parameters of Streptococcus salivarius M18 strain were studied in milk growth medium, streptococcal broth, thioglycol medium (Russia) by means of daily cultivation on a daily basis. medium (Russia) by daily measurement of the optical density of the culture liquids at a wavelength of 600 nm. at a wavelength of 600 nm on a spectrophotometer PowerWave X spectrophotometer (USA) every 24 h. The total observation period was 15 days. Daily antimicrobial activity of the culture fluid was evaluated by disc-diffusion method against Staphylococcus aureus, Escherichia coli strains on Mueller-Hinton agar. The concentration of lactic acid in the culture fluid was assessed using the kit ‘Lactic acid ‒ Olvex’ (Russia). Descriptive statistics, Duncan's criterion and correlation coefficient were used for statistical analysis of the results. correlation. Results. It was established that in the medium of milk growth medium strain Streptococcus salivarius M18 has expressed growth parameters and shows high functional activity. activity. The zone of growth retardation of Staphylococcus aureus when using 3-day culture fluid was 7 ± 1 mm. When the cultivation period was lengthened to 7 days, the growth retardation zone of Staphylococcus aureus was 7 ± 1 mm and that of Escherichia coli was 10±1 mm. After 10 days of incubation in milk growth medium, the culture fluid of Streptococcus salivarius strain inhibited the growth of Staphylococcus aureus (11.7 ± 0.5 mm) and Escherichia coli (13.3 ± 1.1 mm). In thioglycol medium and streptococcal broth, the strain exhibited lower growth properties and did not show antimicrobial activity until 15 days. Conclusion. Antimicrobial activity of Streptococcus salivarius M18 strain depends on the composition of nutrient medium. The most pronounced growth parameters and functional activity were observed in the milk growth medium.
About the Authors
D. S. PanteleevRussian Federation
Danil S. Panteleev, Resident of the Department,
Perm.
A. P. Godovalov
Russian Federation
Anatolii P. Godovalov, Cand. Sci. (Med.), Associate Professor of the Department,
Perm.
M. V. Yakovlev
Russian Federation
Mikhail V. Yakovlev, Cand. Sci. (Med.), Orthopaedic Dentist,
Perm.
References
1. Deo P. N., Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol. 2019; 23 (1): 122‒128. doi: 10.4103/jomfp.JOMFP_304_18.
2. King A. M., Zhang Z., Glassey E., Siuti P., Clardy J., Voigt C. A. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nature Microbiology. 2023; 8 (12): 2420‒2434. doi: 10.1038/s41564-023-01524-6.
3. Li Y., Liu J., Guan T., Zhang Y., Chen Q., Liu H., Liu C., Luo W., Chen H., Chen L., Zhao T. The submandibular and sublingual glands maintain oral microbial homeostasis through multiple antimicrobial proteins. Frontiers in Cellular and Infection Microbiology. 2023; 12: 1057327. doi: 10.3389/fcimb.2022.1057327.
4. Liu F., Liang, T., Zhang Z., Liu L., Li J., Dong W., Zhang H., Bai S., Ma L., Kang L. Effects of altitude on human oral microbes. AMB Express. 2021; 11 (1): 41. doi: 10.1186/s13568-021-01200-0.
5. Baty J. J., Stoner S. N., Scoffield J. A. Oral Commensal Streptococci: Gatekeepers of the Oral Cavity. Journal of Bacteriology. 2022; 204 (11): e0025722. doi: 10.1128/jb.00257-22
6. Abranches J., Zeng L., Kajfasz J. K., Palmer S. R., Chakraborty B., Wen Z. T., Richards V. P., Brady L. J., Lemos J. A. Biology of Oral Streptococci. Microbiology Spectrum. 2018; 6 (5): 10.1128/microbiolspec.GPP3-00422018. doi: 10.1128/microbiolspec.GPP3-0042-2018.
7. Suarez J. E. Microbiota autоctona, probiоticos y prebiоticos [Autochthonous microbiota, probiotics and prebiotics]. Nutricion Hospitalaria. 2015; 31 Suppl 1: 3‒9. doi: 10.3305/nh.2015.31.sup1.8701.
8. Kanwar I., Sah A. K., Suresh P. K. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies. Current Pharmaceutical Design. 2017; 23 (14): 2084‒2095. doi: 10.2174/1381612822666161124154549.
9. Pathak J. L., Yan Y., Zhang Q., Wang L., Ge L. The role of oral microbiome in respiratory health and diseases. Respiratory Medicine. 2021; 185: 106475. doi: 10.1016/j.rmed.2021.106475.
10. Bloch S., Hager-Mair F. F., Andrukhov O., Schаffer C. Oral streptococci: modulators of health and disease. Frontiers in Cellular and Infection Microbiology. 2024; 14: 1357631. doi: 10.3389/fcimb.2024.1357631.
11. Potempa J., Mydel P., Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nature Reviews Rheumatology. 2017; 13 (10): 606‒620. doi: 10.1038/nrrheum.2017.132.
12. Bui F. Q., Almeida-da-Silva C. L. C., Huynh B., Trinh A., Liu, J., Woodward J., Asadi H., Ojcius D. M. Association between periodontal pathogens and systemic disease. Journal Biomed. 2019; 42 (1): 27‒35. doi: 10.1016/j.bj.2018.12.001.
13. Madhavan A., Arun K. B., Sindhu R., Krishnamoorthy J., Reshmy R., Sirohi R., Pugazhendi A., Awasthi M. K., Szakacs G., Binod, P. Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microbial Cell Factories. 2021; 20 (1): 124. doi:10.1186/s12934-021-01617-z14.
14. Lund P. A., De Biase D., Liran O., Scheler O., Mira N. P., Cetecioglu Z., Fernandez E. N., Bover-Cid S., Hall R., Sauer M., O'Byrne C. Understanding How Microorganisms Respond to Acid pH Is Central to Their Control and Successful Exploitation. Frontiers in Microbiology. 2020; 11: 556140. doi: 10.3389/fmicb.2020.556140.
15. Kassim A., Omuse G., Premji Z., Revathi G. Comparison of Clinical Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing guidelines for the interpretation of antibiotic susceptibility at a University teaching hospital in Nairobi, Kenya: a cross-sectional study // Annals of clinical microbiology and antimicrobials. 2016; 15 (21). doi: 10.1186/s12941-016-0135-3.
16. Andreeva I. V., Steczyuk O. U. New probiotic strain Streptococcus salivarius K12 in clinical practice. Klinicheskaya mikrobiologiya i antimikrobnaya ximioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy. 2019; 21 (2): 92‒99 (In Russ.).
17. Taxaviev I. G., Alimov A. M. Study of the growth of microorganisms of the genus streptococcus on various nutrient media. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N. E. Baumana = Scientific Notes of the Kazan State Academy of Veterinary Medicine named after N. E. Bauman. 2018; 234 (2): 190‒195 (In Russ.).
18. Fedorova O. V., Ponkratova S. A., Valeeva R. T., Islamgulov I. R. Nutrient media in the production of medical and veterinary drugs. Vestnik Kazanskogo tekhnologicheskogo universiteta = Herald of Kazan Technological University. 2017; 20 (4): 130‒133 (In Russ.).
19. Dzhafarov E`. M., E`disherashvili U. B., Musaev M. G., Stomatov D. V., Dolgalev A. A., Burlakova L. A., Shul`ga G. S., Yusupov X. R. Prospects for the application of probiotics based on S. salivarius in dentistry. Literature review. Glavnyy vrach Yuga Rossii = Chief Physician of the South of Russia. 2021; 6 (81): 4‒7 (In Russ.).
Review
For citations:
Panteleev D.S., Godovalov A.P., Yakovlev M.V. Investigation of antimicrobial activity of probiotic strain Streptococcus salivarius. Astrakhan medical journal. 2025;20(4):84-92. (In Russ.) https://doi.org/10.17021/1992-6499-2025-4-84-92


















