Preview

Astrakhan medical journal

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Epigenetics in medicine. The current state of the problem

https://doi.org/10.17021/1992-6499-2025-4-32-50

Abstract

Epigenetics, which studies heritable changes in gene expression that do not involve alterations in the deoxyribonucleic acid nucleotide sequence, is one of the key areas of modern biomedical research. This review systematizes fundamental epigenetic mechanisms, including deoxyribonucleic acid methylation, posttranslational histone modifications, and the regulation by non-coding micro-ribonucleic acids, and analyzes their role in the development of pathological processes in socially significant diseases: arterial hypertension, type 2 diabetes mellitus, bronchial asthma, and oncological processes. It has been shown that epigenetic changes induced by environmental factors (stress, nutritional deficiency, exposure to toxins) contribute to the formation of stable pathological phenotypes. In particular, hypermethylation of the promoters of the HSD11B2, AGTR1, and TLR2 genes is associated with the development of arterial hypertension, while hypomethylation of PPARGC1A and TCF7L2 correlates with insulin resistance in type 2 diabetes mellitus. In bronchial asthma, alterations in the methylation of cytokine genes (IL4, IL13) have been identified, while in oncology, global hypomethylation alongside localized hypermethylation of tumor suppressors (p16, BRCA) has been observed.Special attention is given to the potential of epigenetic therapy, including deoxyribonucleic acid methyltransferase inhibitors (azacitidine) and histone deacetylase inhibitors (vorinostat), as well as the prospects of using micro-ribonucleic acids as biomarkers and therapeutic targets. The reversibility of epigenetic modifications is emphasized, opening new possibilities for preventive medicine and personalized treatment.

About the Authors

T. V. Chivirgina
Аstrakhan State Medical University
Russian Federation

Tatyana V. Chivirgina, Assistant of the Department,

Astrakhan.



E. N. Chernyshev
Аstrakhan State Medical University
Russian Federation

Elena N. Chernyshevaa, Dr. Sci. (Med.), Head of the Department,

Astrakhan.



A. A. Vorobyeva
Аstrakhan State Medical University
Russian Federation

Anna A. Vorobyova, Cand. Sci. (Med.), Associate Professor of the Department,

Astrakhan.



M. R. Magomedova
Аstrakhan State Medical University
Russian Federation

Maisat R. Magomedova, Laboratory Assistant of the Department,

Astrakhan.



K. V. Derzhavin
Alexander-Mariinsky Regional Clinical Hospital
Russian Federation

Konstantin V. Derzhavin , Endoascular Surgeon,

Astrakhan.



References

1. Korochkin L. What is Epigenetics. Genetics. 2006; 42 (9): 1156–1164 (In Russ.).

2. Romanovskaya T. V. Epigenetics. Minsk: Belarusian State University; 2022: 88 p. (In Russ.).

3. Patkin E. L., Sofronov G. A. Epigenetics of Populations, Ecotoxicogenetics, and Human Diseases. URL: https://cyberleninka.ru/article/n/epigenetika-populyatsiy-ekotoksikogenetika-i-bolezni-cheloveka/viewer (In Russ.).

4. Smirnov V. V., Leonov. G. E. Epigenetics: Theoretical Aspects and Practical Significance. URL: https://www.lvrach.ru/2016/12/15436615 (In Russ.).

5. Conrad Hal Waddington. URL: https://en.wikipedia.org/wiki/Conrad_Hal_Waddington.

6. Filina Yu. V., Gabdulkhakova A. G., Arleevskaya M. I. Methods of DNA methylation analysis. Clinical Laboratory Diagnostics. 2012; 8: 15–18 (In Russ.).

7. Maksimenko L. V. Epigenetics as an evidence base for the influence of lifestyle on health and disease. Preventive medicine. 2019; 22 (2): 115–120. doi: 10.17116/profmed201922021115 (In Russ.).

8. Weaver A. K. G., Cervoni N., Champagne F. A., D'Alessio A. K., Sharma S., Seckle J. R., Dymov S., Schiff M., Meaney M. J. Epigenetic programming by maternal behavior. Nature Neuroscience. 2004; 7 (8): 847–854. doi: 10.1038/nn1276.

9. Shirin A. D., Kaletin G. I., Baranova O. Yu. Epigenetics in oncohematology: a brief abstract review. Clinical oncohematology. 2015; 8 (1): 26–30 (In Russ.).

10. Ivanova E. N. Genetic regulation of social behavior. Behavioral Genetics Journal. 2020; 15 (2): 112–125. doi: 10.1016/j.bgene.2020.04.003 (In Russ.).

11. Ivanov A. B. Epigenetics and a Revolution in the Thinking of Practical Psychologists. Autism, ADHD, Jumping Genes. Or How Nature Takes Revenge on Man? Moscow: PostNauka, 2023. URL: https://postnauka.org/video/12345 (In Russ.).

12. Vanyushin B. Epigenetics Today and Tomorrow. Vavilov Journal of Genetics and Breeding. 2013; 17 (4/2): 805–832 (In Russ.).

13. Hein H., Li N., Ferreira H. Distinctive DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA. 2012; 109: 10522–10527.

14. Chandran A., Anthony S., Jose L., Mycobacterium Tuberculosis infection induces drug-induced HDAC1 suppression of IL-12B gene expression in macrophages. Front Cell Infect Microbiol. 2015; 5: 90.

15. Vainakhskaya T. G. Precision cardiology: a fine line between hope and disappointment. Medical news. 2016; 2: 9–16. URL: https://cyberleninka.ru/article/n/pretsizionnaya-kardiologiya-tonkaya-gran-mezhdu-nadezhdoy-i-razocharovaniem/viewer.

16. Ludwig M., Hoffmann B., Endler K., Smolarek L. Epigenetic regulation of nutrition and exercise: a systematic review. Journal of Human Hypertension. 2020; 34 (4): 261–268. doi: 10.1038/s41371-019-0256-1.

17. Golovanova N. I., Astratenkova I. V. Gene polymorphism and professional activity as risk factors for the development of arterial hypertension. Bulletin of St. Petersburg University. Medicine. 2023; 18 (1): 4–11. doi: 10.21638/spbu11.2023.101 (In Russ.).

18. Valinlyuk V., Tsai H.-H., Rogstad D.K., Burdzi A., Bird A., Sowers L.K. Oxidative damage to methyl-CpG sequences inhibits binding of the methyl-CpG-binding domain (MBD) of MeCP2. Nucleic Acids Research. 2004; 32 (14): 4100–4108. doi: 10.1093/nar/gkh739 (In Russ.).

19. Kokh N. V., Slepukhina A. A., Lifshitz G. I. Arterial hypertension: molecular genetic and pharmacological approaches. Pharmacogenetics and pharmacogenomics. 2015; 2: 4–6.

20. Lee H., Kim B. H., Park N. Y., Park H. J., Park J. Y., Kim S., Bae Y., Kim J. W., Ahn Y. H. Differential methylation of the promoter region of the SLC12A2 gene in the kidneys of spontaneously hypertensive rats. PLoS ONE. 2015; 10 (2): art. e0117703. doi: 10.1371/journal.pone.0117703.

21. Riviere G., Linhard D., Andrieu T., Vieux D., Frey B. M., Frey F. J. Epigenetic regulation of somatic angiotensin-converting enzyme (ACE) by DNA methylation and histone acetylation. Journal of Molecular Medicine. 2010; 88 (2): 185–194. doi: 10.1007/s00109-010-0653-y.

22. Elkina A. Yu., Akimova N. S., Schwartz Yu. G. Polymorphic variants of the genes of angiotensin-converting enzyme, angiotensinogen, and the gene of the type 1 receptor to angiotensin-II as genetic predictors of the development of arterial hypertension. Russian Journal of Cardiology. 2021; 26 (S1): 4143. doi: 10.15829/1560-4071-2021-4143 (In Russ.).

23. Mao Sh., Liang Q., Li Z., Jiang H., Ma L., Zhang H., Zhang Y., Chen W., Li Q., Wang Y. Hypomethylation of the Toll-like receptor type 2 gene is associated with essential arterial hypertension. Hypertension Research. 2020. Vol. 43, no. 3. P. 182–189. doi: 10.1038/s41440-019-0355-y.

24. Konradi A. O. Epigenetic mechanisms in the development and progression of arterial hypertension and its complications. Arterial hypertension. 2015; 21 (6): 559–566. doi: 10.18705/1607-419X-2015-21-6-559-566.

25. Li L., Liu W., Wang H., Zhang S., Zhao L., Wang S., Chen Sh., Ma A., Wang T., Xu Q. Vascular smooth muscle stiffness as a mechanism for increased aortic stiffness in hypertension. American Journal of Physiology – Heart and Circulatory Physiology. 2020; 319 (6): H1282–H1291. doi: 10.1152/ajpheart.00213.2020.

26. Zhou N., Li J. J., Stoll S., Ma B., Wiener R., Wang Q., Costa K.D., Qiu H. SRF/myocardin inhibition attenuates aortic stiffness by targeting vascular smooth muscle cell strengthening in hypertension. Cardiovascular Research. 2021; 117 (8): 1908–1920. doi: 10.1093/cvr/cvaa225.

27. Li L., Zhang Y., Wang S., Chen Sh., Liu W., Xu Q., Zhao L. Dysregulation of miR-202-3p targeting soluble ST2 promotes vascular inflammation and hypertension. Journal of Hypertension. 2022; 40 (8): 1565–1576. doi: 10.1097/HJH.00000000000003210.

28. Markel A. L. Hypertension: Genetics, Clinical Features, Experiment. Russian Journal of Cardiology. 2017; 10: 133–139. doi: 10.15829/1560-4071-2017-10-133-139.

29. Safronenko A. V. Genealogical and Molecular Genetic Aspects of Arterial Hypertension. Modern Problems of Science and Education. 2012; 1: 28–34 (In Russ.).

30. IDF Diabetes Atlas. 10th ed. 2021. URL: https://www.diabetesatlas.org (accessed: 06.11.2024).

31. Aitbaev K. A., Mamutova S. K., Murkamilov I. T., Fomin V. V., Kudaibergenova I. O., Murkamilova Zh. A., Yusupov F. A. Type 2 Diabetes Mellitus: The Role of Epigenetic Modifications in Pathophysiology and Prospects for the Use of Epigenetic Therapy. Bulletin of Science and Practice. 2021; 7 (5): 184–203. doi: 10.33619/24142948/66/17.

32. Baranovsky R. V., Abakumets V. Yu., Bogdanova N. V., Bulanova K. Ya. The Role of Epigenetic Regulation in Diabetes Mellitus. Available at: https://elib.bsu.by/bitstream/123456789/251349/1/17-20.pdf (In Russ.).

33. Gluckman P., Hanson M. An Inseparable Link: How Developmental Conditions Determine Health and Life Expectancy. Moscow: Delo; 2020: 400 p. (In Russ.).

34. Rzheshesky A., Vaiserman A. Epigenetics: Genes and Something Above. Popular Mechanics. 2015; 2 (In Russ.).

35. Ulemar V., Magnusson P. K. E., Lundholm K., Almqvist K. Heritability and confirmation of genetic association studies of bronchial asthma in children in a twin model // Allergy. 2016. Vol. 71, no. 2. P. 230–238. doi: 10.1111/all.12783.

36. Nenartovich I. A. Epigenetics of bronchial asthma: a literature review. Bulletin of Vitebsk State Medical University. 2017; 16 (2) 7–14. URL: https://cyberleninka.ru/article/n/epigenetika-bronhialnoy-astmy-obzor-literatury/viewer (In Russ.).

37. Wang A. L., Gruzieva O., Qiu W., Kebede Merid S., Celedon H. K., Rabie B. A., Soderhall K., DeMeo D. L., Weiss S. T., Melen E., Tantisira K. G. DNA methylation is associated with the response to inhaled corticosteroid therapy in children with persistent asthma. Clinical & Experimental Allergy. 2019; 49 (9): 1225–1234. doi: https://doi.org/10.1111/cea.13447.

38. Xiao Q., Biajini Myers J. M., Ji H., Metz K., Martin L. J., Lindsay M., He H., Powers R., Ulm A., Ruff B., Eriksen M. B., Somineni H. K., Simmons J., Streit R. T., Kerksmar K. M., Khurana Hershey G. K. Vanin-1 expression and methylation differentiate response to corticosteroid therapy in children with asthma. Journal of Allergy and Clinical Immunology. 2015; 136 (4): 923–931. doi: https://doi.org/10.1016/j.jaci.2015.01.045.

39. Shikeyeva A. A., Kekeeva T. V., Zavalishina L. E., Andreeva Yu. Yu., Frank G. A. Epigenetic changes in non-small cell lung cancer. URL: https://www.mediasphera.ru/issues/onkologiya-zhurnal-im-p-agertsena/2013/5/downloads/ru/032305-218X201353.

40. Wang Q., Li S., Liang H., Luo W., Lu L., Gao Sh., Lu Q., Wang M., Zhang S., Ma S., Peng S., Wu W., Chen J., Ying S., Shen H. DNA methylation in the IL12B and CORT genes is associated with the outcome of inhaled corticosteroid therapy in bronchial asthma. Journal of Allergy and Clinical Immunology. 2019; 144 (6): 1732–1735.e4. doi: 10.1016/j.jaci.2019.08.023.

41. Janjanam V. D., Mukherjee N., Lockett G. A., Rezwan F. I., Kurukularachi R., Mitchell F., Zhang H., Arshad H., Holloway J. W., Karmaus V. Tetanus vaccination is associated with changes in DNA methylation and reduces the risk of asthma development in adolescence. Vaccine. 2016; 34 (51): 6493–6501. doi: https://doi.org/10.1016/j.vaccine.2016.10.068.

42. Mustafin R. N., Khusnutdinova E. K. Epigenetics of carcinogenesis. Creative surgery and oncology. 2017; 7 (3): 60–67. doi: 10.24060/2076-3093-2017-7-3-60-67 (In Russ.).

43. Zhang Y., Wang J., Sun H., Huang G., Yi Q., Zheng Y., Wang Q., Chen L. Methylation of multiple genes as candidate biomarkers for non-small cell lung cancer. Cancer Letters. 2011; 303 (1): 21–28. doi: 10.1016/j.canlet.2010.12.011.

44. Fackler M. J., Place M., Li Y. Discovery and technical validation of high-throughput methylation DNA markers for identifying cervical lesions at risk for malignant progression in low- and middle-income countries. Clin Epigenet. 2024; 16 (56). doi: 10.1186/s13148-024-01669-z.

45. De Strooper L. M. A., Berkhof J., Steenbergen R. D. M., Lissenberg-Witte B. I., Snijders P. J. F., Meyer K. J. L. M., Heedeman D. A. M. Validation of the FAM19A4/miR124-2 DNA methylation test for the detection of cervical (pre)cancer in self-testing samples from HPV-positive women. Gynecologic Oncology. 2016; 141 (2): 341–347. doi: 10.1016/j.ygyno.2016.02.012.

46. Chadov B. A new stage in the development of genetics and the term “Epigenetics”. Genetics. 2006; 42 (9): 1261–1275 (In Russ.).

47. Kiselev V. I. Epigenetics Opens Up Enormous Therapeutic and Diagnostic Possibilities. National Oncology Program 2030. 2022; 1 (In Russ.).

48. Garcia-Martinez L., Zhang Y., Nakata Y., Chan H.-L. Epigenetic Mechanisms of Breast Cancer Therapy and Resistance. Nature Communications. 2021; 12 (1): 1786. URL: https://www.researchgate.net/publication/350195254.

49. Kiselev V. L., Kiseleva L. M., Vorobyeva N. S., Kolesnikova I. S., Shashkova O. V., Zhuravleva T. A. Epigenetic regulation in obesity-associated carcinogenesis: A bridge between metabolism and cancer. Vavilov Journal of Genetics and Breeding. 2022; 26 (8): 751–764. doi: 10.18699/VJGB-22-90 (In Russ.).

50. Li Ya., Chen H., Liu S., Zhang Q., Wang Q., Li Z., Sun Ya. Single-cell analysis reveals the role of the tumor microenvironment in T cell exhaustion and dysfunction in pancreatic cancer. Nature Communications. 2022; 13 (1): 4072. doi: 10.1038/s41467-022-31770-x.

51. Hyun Y. D., Wang C., Ahearn T. W., Brown S. B., Molecular mechanisms linking high body mass index to breast cancer etiology in postmenopausal breast tumor and adjacent tissues. Breast Cancer Research and Treatment. 2019; 173 (3). URL: https://www.researchgate.net/publication/328674988.

52. Gyamfi D., Eom M., Ku D. S., Choi D., Multifaceted role of interleukin-6 in the interaction of adipocytes and breast cancer cells. Translational Oncology. 2018; 11 (2): 275–285. URL: https://www.researchgate.net/publication/323015588.


Review

For citations:


Chivirgina T.V., Chernyshev E.N., Vorobyeva A.A., Magomedova M.R., Derzhavin K.V. Epigenetics in medicine. The current state of the problem. Astrakhan medical journal. 2025;20(4):32-50. (In Russ.) https://doi.org/10.17021/1992-6499-2025-4-32-50

Views: 20


ISSN 1992-6499 (Print)