Modern biologically active suture material: problems and prospects
https://doi.org/10.17021/1992-6499-2025-3-88-100
Abstract
The aim of this study was to identify the key problems and prospects for the development of biologically active suture materials. Modern domestic and foreign literature sources on this topic were analyzed. One of the main difficulties remains the creation of a universal suture material that would combine the advantages of existing solutions without their disadvantages. Current developments, such as “Tveran” (“Volot”, Russia) or combination of polypropylene and polyglycolic acid with fluoroquinolones, show high efficiency, but their use is associated with the risk of antibiotic resistance development. This problem is becoming increasingly important due to the emergence of resistant strains of microorganisms. Additional limitations include the hydrophobicity of filaments, as well as the lack of functional groups for immobilization of active compounds on the surface of the suture material. Addressing these issues can significantly improve the efficiency and safety of suture materials.
About the Authors
A. M. MorozovРоссия
Artem M. Morozov, Cand. Sci. (Med.), Associate Professor, Associate Professor of the Department
Tver
A. N. Sergeev
Россия
Alexey N. Sergeev, Dr. Sci. (Med.), Associate Professor, Head of the Department
Tver
E. M. Askerov
Россия
Elshad M. Askerov, Cand. Sci. (Med.), Associate Professor, Associate Professor of the Department
Tver
V. S. Bogochanov
Россия
Vladislav S. Bogochanov, student, Tver State Medical University
Tver
E. I. Nilova
Россия
Elizaveta I. Nilova, student, Tver State Medical University
Tver
D. A. Dmitrieva
Россия
Darya A. Dmitrieva, student, Tver State Medical University
Tver
References
1. Khil M. S., Cha D. I., Kim H. Y., Kim I. S., Bhattarai N. Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003; 67 (2): 675–679. doi: 10.1002/jbm.b.10058.
2. Morozov A.M., Sergeev A. N., Sergeev N. A., Ryzhova T. S., Pakhomov M. A. Diagnosis and prevention of infectious complications of surgical intervention. Vestnik Ivanovskoy meditsinskoy akademii = Bulletin of the Ivanovo Medical Academy. 2021; 1: 54–58. doi: 10.52246/1606-8157_2021_26_1_54 (in Russ.).
3. Kurtz S. M., Lau E., Watson H., Schmier J. K., Parvizi J. Economic burden of periprosthetic joint infection in the United States. The Journal of arthroplasty. 2012; 27 (8): 61–65.e1. doi: 10.1016/j.arth.2012.02.022.
4. Sergeev A. N., Morozov A. M., Askerov E. M., Sergeev N. A., Armasov A. R., Isaev Yu. A. Methods of local antimicrobial prevention of infection in the surgical intervention area. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal. 2020; 2: 243–248. doi: 10.17816/KMJ2020-243 (in Russ.).
5. Edmiston C. E. J., Spencer M., Lewis B. D., Brown K. R., Rossi P. J., Henen C. R., Smith H. D., Seabrook G. R.. Reducing the risk of surgical site infections: did we really think that SCIP was going to lead us to the promised land? Surgical Infections. 2011; 12 (3): 169–177. doi: 10.1089/sur.2011.036.
6. Fedorov P. G., Arshakyan V. A., Gunter V. E., Shtofin S. G., Samartsev V. A. Modern suture materials (literature review). Acta biomedica scientifica. 2017; 6: 157–162. doi: 10.12737/article_5a0a8e626adf33.46655939 (in Russ.).
7. Ford H. R., Jones P., Gaines B., Reblock K., Simpkins D. L. Intraoperative handling and wound healing: controlled clinical trial comparing coated VICRYL® Plus antibacterial suture (coated polyglactin 910 suture with triclosan) with coated VICRYL® suture (coated polyglactin 910 suture). Surgical infections. 2005; 6 (3): 313–321. doi: 10.1089/sur.2005.6.313.
8. Labhasetwar V., Bonadio J., Goldstein S., Chen W., Levy R. J. A DNA controlled-release coating for gene transfer: Transfection in skeletal and cardiac muscle. Journal of Pharmaceutical Sciences. 1998; 87: 1347–1350. doi: 10.1021/js980077+.
9. Loh A. Controlled Release of Drugs from Surgical Suture. Massachusetts: Institute of Technology. 1987; 9–39. doi: 1721.1/14960.
10. Shibuya T. Y., Wei W.-Z., Zormeier M., Ensley J., Sakr W., Mathog R. H., Meleca R. J., Yoo G., June C. H., Levine B., Lum L. G. Anti-CD3/anti-CD28 monoclonal antibody–coated suture enhances the immune response of patients with head and neck squamous cell carcinoma. Archives of Otolaryngology – Head and Neck Surgery. 1999; 125: 1229– 1234. doi:10.1001/archotol.125.11.1229.
11. Shibuya T. Y., Kim S., Nguyen K., Parikh P., Wadhwa A., Brockardt C., Do J. Covalent linking of proteins and cytokines to suture: Enhancing the immune response of head and neck cancer patients. Laryngoscope. 2003; 113: 1870– 1884. doi: 10.1097/00005537-200311000-00004.
12. Lee J. S., Lu Y., Baer G. S., Markel M. D., Murphy W. L. Controllable protein delivery from coated surgical sutures. Journal of Materials Chemistry. 2010; 20: 8894–8903. doi: 10.1039/C0JM01389G.
13. Horvathy D. B., Vacz G., Cseleny ak A., Weszl M., Kiss L., Lacza Z. Albumin-coated bioactive suture for cell transplantation. Surgical Innovation. 2013; 20: 249–255. doi: 10.1177/1553350612451353.
14. Cummings S. H., Grande D. A., Hee C. K., Kestler H. K., Roden C. M., Shah N. V., Razzano P., Dines D. M., Chahine N. O., Dines J. S. Effect of recombinant human platelet-derived growth factor-BB-coated sutures on Achilles tendon healing in a rat model: A histological and biomechanical study. Journal of Tissue Engineering. 2012; 3: 1–9. doi: 10.1177/2041731412453577.
15. Blaker J., Nazhat S., Boccaccini A. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials. 2004; 25: 1319–1329. doi: 10.1016/j.biomaterials.2003.08.007.
16. Meleshko A. A., Afinogenova A. G., Afinogenov G. E., Spiridonova A. A., Tolstoy V. P. Аntibacterial inorganic agents: efficiency of using multicomponent systems. Infektsiya i immunitet = Russian Journal of Infection and Immunity. 2020; 10 (4): 639–654. doi: 10.15789/2220-7619-AIA-1512 (in Russ.).
17. Dovnar R. I., Vasilkov A. Yu., Sakalova T. M., Butenko I. E., Smotryn S. M., Iaskevich N. N. Antibacterial Action of Silver Nanoparticles. Novosti khirurgii = Surgery News. 2022; 30 (1): 38–45. doi: 10.18484/2305-0047.2022.1.38 (in Russ.).
18. Kabeshev B. O. Silver and nanotechnologies in modification of suture material for prevention of surgical site infection. Mediko-biologicheskiye problemy zhiznedeyatelnosti = Medical and Biological Problems of Life Activity. 2021; 2 (26): 13–21 (in Russ.).
19. Rothenburger S., Spangler D., Bhende S., Burkley D. In vitro antimicrobial evaluation of Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 with triclosan) using zone of inhibition assays. Surgical Infections. 2002; 3: 79–87. doi: 10.1089/sur.2002.3.s1-79.
20. Sharkov S. M., Iskhanova S. R. The use of suture material with triclosan coating as prevention of infections in the surgical intervention area (literature review). Rany i ranevye infektsii. Zhurnal imeni professora B. M. Kostyuchenka = Wounds and wound infections. Journal named after prof. B. M. Kostyuchenka. 2021; 2: 28–32. doi: 10.25199/2408-9613-2021-8-2-28-32 (in Russ.).
21. Edmiston C. E., Seabrook G. R., Goheen M. P., Krepel C. J., Johnson C. P., Lewis B. D., Brown K. R., Towne J. B. Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination. Journal of The American College of Surgeons. 2006; 203 (4): 481–489. doi: 10.1016/j.jamcollsurg.2006.06.026.
22. Grau J. M. S., Crespo M. T., Durántez F. D., Chaves C. R., Cartes J. A. M., Pérez F. D. Prevention of surgical infection using reabsorbable antibacterial suture (Vicryl Plus) versus reabsorbable conventional suture in hernioplasty. An experimental study in animals. Cirugia Espan. 2007; 86 (6): 324–329. doi: 10.1016/s0009-739x(07)71331-3.
23. Indhumathi M., Kumar S. Application of antibacterial suture materials in oral and maxillofacial surgery. Drug Invention Today. 2019; 12 (1): 108–113.
24. Sh M. E., Rahgozar S., Tajmiri G., Alizargar J., Mirsatari S. A. Microbiological Evaluation of the Antibacterial Vicryl Suture in the Mandibular Third Molar Extraction Surgery. Journal Orofacial Science. 2022; 14: 120–127. doi: 10.4103/jofs.jofs_131_22.
25. Nadafpour N., Montazeri M., Moradi M., Ahmadzadeh S., Etemadi A. Bacterial Colonization on Different Suture Materials Used in Oral Implantology: A Randomized Clinical Trial. Frontiers in Dental Medicine. 2021; 18 (25): 1–7. doi: 10.18502/fid.v18i25.6935.
26. Isik I., Selimen D., Senay S., Alhan C. Efficiency of antibacterial suture material in cardiac surgery: A doubleblind randomized prospective study. Heart Surgery Forum. 2012; 15: 40–45. doi: 10.1532/HSF98.20111106.
27. Nakamura T., Kashimura N., Noji T., Suzuki O., Ambo Y., Nakamura F., Kishida A. Triclosan-coated sutures reduce the incidence of wound infections and the costs after colorectal surgery: A randomized controlled trial. Surgery. 2013; 153: 576–583. doi: 10.1016/j.surg.2012.11.018.
28. Zhang Q., Zhang C., Fang X., Luo X., Guo J. Biomaterial suture Vicryl Plus reduces wound-related complications. Therapeutics and Clinical Risk Management. 2018; 14: 1417–1421. doi: 10.2147/TCRM.S164658.
29. Kabeshev B. O., Bontsevich D. N., Vasilkov A. Yu., Shevchenko N. I. Antimicrobial activity of polyamide based suture material modified by silver nanoparticles. Zdravoohranenie (Minsk) = Healthcare (Minsk). 2012; 5: 13–15 (In Russ.).
30. Kabeshev B. O., Zinovkin D. A., Bontsevich D. N., Nadyrov E. A. The effect of surgical suture material modified with silver nano-particles on the course of imflammatory wound process in vivo in microbial contamination. Problemy zdorovya i ekologii = Health and Ecology Issues. 2014; 2 (40): 109–115. doi: 10.51523/2708-6011.2014-11-2-23 (in Russ.).
31. Kabeshev B. O., Bontsevich D. N., Vasilkov A. Yu. Study of toxic effect on suture material modified by silver nanoparticles. Problemy zdorovya i ekologii = Health and Ecology Issues. 2011; 4 (30): 151–154. doi: 10.51523/2708-6011.2011-8-4-29 (in Russ.).
32. Ho C. H., Odermatt E. K., Berndt I., Tiller J. C. Long-term active antimicrobial coatings for surgical sutures based on silver nanoparticles and hyperbranched polylysine. Journal of Biomaterial Sciense, Polymer Edition. 2013; 24: 1589–1600. doi: 10.1080/09205063.2013.782803.
33. De Simone S., Gallo A., Paladini F., Sannino A., Pollini M. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. Journal of Material Science: Materials in Medicine. 2014; 25: 2205–2214. doi: 10.1007/s10856-014-5262-9.
34. Ramos A. F. N., Miranda J. D. Propolis: a review of its anti-inflammatory and healing actions. Journal of Venomous Animals and Toxins including Tropical Diseases. 2007; 13 (4): 697–710. doi: 10.1590/S1678-91992007000400002.
35. do Nascimento T. G., Silva A. D. S., Lessa Constant P. B., da Silva S. A. S., Fidelis de Moura M. A. B., Almeida C. P. de, Silva V. D. C., Wanderley A. B., Basílio Júnior I. D., Escodro P. B. Phytochemical screening, antioxidant and antibacterial activities of some commercial extract of propolis. Journal of Apicultural Research. 2018; 57 (2): 246–254. doi: 10.1080/00218839.2017.1412563.
36. Airen B., Sarkar P. A., Tomar U., Bishen K. A. Antibacterial effect of propolis derived from tribal region on Streptococcus mutans and Lactobacillus acidophilus: An in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2018; 36 (1): 48–52. doi: 10.4103/JISPPD.JISPPD_1128_17.
37. Baygar T. Characterization of silk sutures coated with propolis and biogenic silver nanoparticles (AgNPs); an eco-friendly solution with wound healing potential against surgical site infections (SSIs). Turkish Journal of Medical Sciences. 2020; 50 (1): 258–266. doi: 10.3906/sag-1906-48.
38. Pryjmaková J., Vokatá B., Šlouf M., Hubáček T., Martínez-García P., Rebollar E., Slepička P., Siegel J. Silverenriched microdomain patterns as advanced bactericidal coatings for polymer-based medical devices. Colloids and Surfaces B: Biointerfaces. 2024; 242: 114067. doi: 10.1016/j.colsurfb.2024.114067.
39. Sheiko N., Kékicheff P., Marie P., Schmutz M., Jacomine L., Perrin-Schmitt F. PEEK (polyether-ether-ketone)- coated nitinol wire: Film stability for biocompatibility applications. Applied Surface Science. 2016; 389: 651–665. doi: 10.1016/j.apsusc.2016.07.159.
40. Ma R., Tang T. Current strategies to improve the bioactivity of PEEK. International Journal of Molecular Sciences. 2014; 15 (4): 5426-5445. doi: 10.3390/ijms15045426.
41. Zlobina O. V., Bugaeva I. O., Glukhova I. V., Glukhova A. V., Pichkhidze S. Ya. Experimental modification and investigation of antibacterial surgical suture material. Sibirskoe medicinskoe obozrenie = Siberian Medical Review. 2023; 1: 51–56. doi: 10.20333/25000136-2023-1-51-56 (in Russ.).
42. Chen X., Hou D., Wang L., Zhang Q., Zou J., Sun G. Antibacterial surgical silk sutures using a highperformance slow-release carrier coating system. ACS Applied Materials & Interfaces. 2015; 7: 22394–22403. doi: 10.1021/acsami.5b06239.
43. Zyryanov S. K., Golub A.V., Kozlov R. S. Doxycycline in modern clinical practice. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical microbiology and antimicrobial chemotherapy. 2020; 2: 21–28. doi: 10.36488/cmac.2020.1.21-28 (in Russ.).
44. Ter-Avetisyants I. A., Miroshnichenko P. V., Khathakumov S. S., Panfilkina E. V. The effect of gentamicin on immune body resistance factors. Evraziyskiy soyuz uchenykh = Eurasian Union of Scientists. 2016; 3–5 (24): 143–146 (In Russ.).
45. Skalskaya N. T., Darvin V. V. Suture material with antibacterial coating in small and large intestine resection. Vestnik SurGU. Meditsina = Bulletin of Surgut University. Medicine. 2024; 17 (2): 8–16. doi: 10.35266/2949-3447-2024-2-1 (in Russ.).
46. Antropova G. A., Okonenko T.I. Pharmaceutical information: focus on fluoroquinolones. Vestnik novgorodskogo gosudarstvennogo universiteta = Bulletin of the Novgorod State University. 2021; 3 (124): 65–72. doi: 10.34680/2076-8052.2021.3(124).65-72 (in Russ.).
47. Mokhov E.M., Sergeev A.N., Kadykov V.A., Askerov E.M., Armasov A.R., Lyubsky I.V., Serov E. V., Saharov A. A., Suhov A. D. The use of a new biologically active surgical suture material in clinical practice. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2016; 5: 159 (in Russ.).
48. Knyazyuk A. S., Bontsevich D. N., Shevchenko N. I. Comparative characteristics of antibacterial activity of a new biologically active suture material. Problemy zdorovya i ekologii = Problems of health and ecology. 2017; 4: 106–110 (in Russ.).
49. Kniaziuk A.S., Lyzikov A.N., Zinovkin D.A., Nadyrov E.A., Bontsevich D.N. The influence of new antibacterial sutural material on the traumatory process in experiment. Problemy zdorovya i ekologii = Health and Ecology Issues. 2015; 1: 48–53. doi: 10.51523/2708-6011.2015-12-1-9 (in Russ.).
50. Chubovskiy A. I. Review of modern suture materials in abdominal surgery. Colloquium-journal. 2020; 2 (54): 109–111. doi: 10.24411/2520-6990-2019-11239 (in Russ.).
51. Mosolova A. V., Klimova L. G., Sukovatykh B. S., Zatolokina M. A., Semykin D. A., Zatolokina E. S. Evaluation of the biocidal activity of a new suture material impregnated with miramistin. Vestnik VolGMU = Journal of Volgograd State Medical University. 2021; 1 (77): 31–35. doi: 10.19163/1994-9480-2021-1(77)-31-35 (in Russ.).
52. Sukovatykh B. S., Nazarenko P. M., Mosolova A. V., Pashkov V. M. The effect of the antiseptic coating with miramistin on the strength and extensibility of the suture material. Vestnik Natsionalnogo mediko-khirurgicheskogo Tsentra imeni N. I. Pirogova = Bulletin of Pirogov National Medical & Surgical Center. 2023; 18 (4): 103–105. doi: 10.25881/20728255_2023_18_4_103 (in Russ.).
53. Sukovatykh B. S., Mosolova A. V., Zatolokina M. A., Dubonos A. A., Zhukovsky V. A., Anushchenko T. Yu. Application of Suture Material Impregnated with Miramistin in Diffuse Peritonitis: Experimental-Clinical Justification. Vestnik eksperimentalnoy i klinicheskoy khirurgii = Journal of Experimental and Clinical Surgery. 2021; 14 (4): 252–259. doi: 10.18499/2070-478X-2021-14-4-252-259 (in Russ.).
54. Contreras A., Raxworthy M. J., Wood S., Tronci G. Hydrolytic degradability, cell tolerance and on-demand antibacterial effect of electrospun photodynamically active fibres. Pharmaceutics. 2020; 12 (8): 711. doi: 10.3390/pharmaceutics12080711.
55. Mayansky N. A., Alyabyeva N. M., Ponomarenko O. A., Kulichenko T. V., Artemova I. V., Lazareva A.V., Brzhozovskaja E. A., Shamina O. V., Katosova L. K. Dynamics of the prevalence of serotypes and antibiotic resistance of nasopharyngeal pneumococci isolated in children in 2010-2016: results of a retrospective cohort study. Voprosy sovremennoy pediatrii = Issues of Modern Pediatrics. 2017; 5: 413–423. doi: 10.15690/vsp.v16i5.1806 (in Russ.).
56. Namazova-Baranova L. S., Baranov A. A. Antibiotic resistance in the modern world. Pediatricheskaya farmakologiya = Pediatric Pharmacology. 2017; 5: 341–354. doi: 10.15690/pf.v14i5.1782 (in Russ.).
57. Subedi D., Vijay A. K., Kohli G. S., Rice S. A., Willcox M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS ONE. 2018; 13 (9): e0204936. doi: 10.1371/journal.pone.0204936.
58. Efimenko T. A., Terekhova L. P., Efremenkova O. V. The current state of the problem of antibiotic resistance of pathogenic bacteria. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy. 2019; 64: 5–6. doi: 10.24411/0235-2990-2019-10033 (in Russ.).
59. Bochanova E. N., Buchko E. O., Golovina N. I., Kopytko L.N., Kurts E.M., Orlova K.E., Sarmatova N. I., Torgunakova M. S. Antibiotic resistance of Pseudomonas aeruginosa in burn and purulent-septic centers of Krasnoyarsk. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2019; 2: 128 (in Russ.).
60. Stepin A. V. The structure of pathogens and the main problems of antibiotic resistance in infection of the surgical intervention area in cardiac surgery. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy. 2021; 4: 359–366. doi: 10.36488/cmac.2021.4.359-366 (in Russ.).
61. Sergevnin V. I., Kudryavtseva L. G., Pegushina O. G. The frequency of detection and antibiotic resistance of pathogens of purulent-septic infections in patients of a cardiac hospital. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccination Prevention. 2022; 1: 74–80. doi: 10.31631/2073-3046-2022-21-1-74-80 (in Russ.).
62. Markelova N. N., Semenova E. F. Possible ways to overcome antibiotic resistance of nosocomial pathogens Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy. 2018; 63: 11–13 (in Russ.).
63. Schairer D. O., Chouake J. S., Nosanchuk J. D., Friedman A. J. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence. 2012; 3 (3): 271–279. doi: doi.org/10.4161/viru.20328.
64. Chaudhary S., Mehta S. K. Selenium nanomaterials: applications in electronics, catalysis and sensors. Journal of Nanoscience and Nanotechnology. 2014; 14 (2): 1658–1674. doi: 10.1166/jnn.2014.9128.
65. Tsibizova A. A., Yasenyavskaya A. L., Tyurenkov I. N., Ozerov A. A., Samotrueva M. A. Evaluation of the antimicrobial activity of a pyrimidine compound 2-methyl-3-(2-phenyl-2-oxoethyl)-quinazolin-4(3H)-on against Klebsiella pneumoniae under in vivo conditions. Sibirskiy zhurnal klinicheskoy i eksperimentalnoy meditsiny = The Siberian Journal of Clinical and Experimental Medicine. 2023; 38 (1): 175–180. doi: 10.29001/2073-8552-2023-38-1-175-180 (in Russ.).
66. Grigorieva M. V. Polymer systems with controlled release of biologically active compounds. Biotekhnologiya = Biotechnology. 2011; 2: 9–23 (in Russ.).
67. Gofman I. V., Buyanov A. L., Bozhkova S. A., Gordina E. M., Khripunov A. K., Ivan’kova E. M., Vlasova E. N., Yakimansky A. V., Baranchikov A. E., Ivanov V. K. New cellulose-polyacrylamide hydrogels containing nano-cerium oxide as new promising nanocomposite materials for biomedical applications. Cellulose. 2024; 31 (12): 7661–7683. doi: 10.1007/s10570-024-06088-0.
68. Knyazyuk A. S., Bontsevich D. N., Polikarpov A. P., Prigozhaeva L. M., Shevchenko N. I. Physical properties of a new antibacterial surgical suture material. Zhurnal Grodnenskogo gosudarstvennogo medicinskogo universiteta = Journal of Grodno State Medical University. 2015; 1: 94–97 (in Russ.).
69. Steblyuk A. N., Kolesnikova N. V., Gunter V. E., Tserkovnaya A. A., Gunter S. V., Kokorev O. V., Anikeev S. G. Level of local cytokine production in the event of nickelid titanium suture material use in experimental surgical hypotension eye operation. Kubanskiy nauchnyy meditsinskiy vestnik = Kuban Scientific Medical Bulletin. 2016; 3: 121– 125 (in Russ.).
70. Arshakyan V.A., Gyunter V.E., Shtofin S.G., Fedorov P.G., Samartsev V.A., Morozov D.V. Ways of improvement of surgical sutural material. Acta Biomedica Scientifica. 2017; 2, 6 (118): 193–197. doi: 10.12737/article_5a0a910977eca1.04637486 (in Russ.).
71. Bondarev A. B. Nitinol – titanium nickelide – shape memory alloys: properties, production, application. Nauchnyy aspekt = The Scientific Aspect. 2019; 3 (3): 351–361 (in Russ.).
72. Medvedev Yu. A., Shestakova L. A., Usatov D. A. Application of fiber titanium nickelide for residual bone cavities filling. Golova i sheya = Head and Neck. 2018; 1: 15–17. doi: 10.25792/HN.2018.6.1.15–17 (in Russ.).
Review
For citations:
Morozov A.M., Sergeev A.N., Askerov E.M., Bogochanov V.S., Nilova E.I., Dmitrieva D.A. Modern biologically active suture material: problems and prospects. Astrakhan medical journal. 2025;20(3):88-100. (In Russ.) https://doi.org/10.17021/1992-6499-2025-3-88-100
JATS XML


















