Resistance to metronidazole: characteristics of the problem, ways to overcome
https://doi.org/10.17021/1992-6499-2025-3-6-16
Abstract
Using the example of metronidazole, modern scientific achievements in the field of discovering new mechanisms for the development of resistance of bacteria and protozoa to antibacterial drugs are systematized. At the molecular level, the epigenetic variability of the development of resistance to metronidazole, as well as its proteomic component in the series of ligand-enzyme-substrate-associated specificity of interaction, is considered. Experimental models with bacterial strains show the prospects of overcoming the mechanisms of antibiotic resistance using modern nanomaterials and organometallic framework polymers. The possibility of selecting conditions and a matrix of metalorganic framework polymers to achieve targeted drug delivery is noted. The use of nanomaterials makes it possible to potentiate the effect of an anti-bacterial drug.
About the Authors
E. E. KruglovРоссия
Egor E. Kruglov, Cand. Sci. (Med.), Researcher, State Research and Testing Military Medical Institute, St. Petersburg, Russia; Associate Professor, Department of Clinical Medicine at Reaviz University
St. Petersburg
M. A. Yudin
Россия
Mikhail A. Yudin, Dr. Sci. (Med.), Professor, Head of the Center
St. Petersburg
A. G. Anokhin
Россия
Alexander G. Anohin, Cand. Sci. (Med.), Head of the Department
St. Petersburg
References
1. Dhand A., Snydman D. R. Mechanism of Resistance in Metronidazole // Antimicrobial Drug Resistance. Infectious Disease. Ed. by D. L. Mayers, S. A. Lerner, M. Oullette, J. D. Sobel. Humana Press; 2009: 692 p. doi: 10.1007/978-1-59745-180-2_19.
2. Smith A. Metronidazole resistance: a hidden epidemic? British Dental Journal. 2018; 224 (6): 403–404. doi: 10.1038/sj.bdj.2018.221.
3. Leiros H. K., Kozielski-Stuhrmann S., Kapp U., Terradot L., Leonard G. A., McSweeney S. M. Structural basis of 5-nitroimidazole antibiotic resistance: the crystal structure of NimA from Deinococcus radiodurans. The Journal of biological chemistry. 2004; 279 (53): 55840–55849.
4. Alauzet C., Lozniewski A., Marchandin H. Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe. 2019; 55: 40–53. doi: 10.1016/j.anaerobe.2018.10.004.
5. Wang B., Powell S. M., Hessami N., Najar F. Z., Thomas L. M., Karr E. A., West A. H., Richter-Addo G. B. Crystal structures of two nitroreductases from hypervirulent Clostridium difficile and functionally related interactions with the antibiotic metronidazole. Nitric oxide: biology and chemistry. 2016; 60: 32–39. doi: 10.1016/j.niox.2016.09.003.
6. McDonald L. C., Gerding D. N., Johnson S., Bakken J. S., Carroll K. C., Coffin S. E., Dubberke E. R., Garey K. W., Gould C. V., Kelly C., Loo V., Shaklee Sammons J., Sandora T. J., Wilcox M. H. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2018; 66 (7): 987–994. doi: 10.1093/cid/ciy149.
7. Doan T. H., Bernet-Camard M. F., Hoÿs S., Janoir C., Péchiné S. Impact of Subinhibitory Concentrations of Metronidazole on Morphology, Motility, Biofilm Formation and Colonization of Clostridioides difficile. Antibiotics (Basel). 2022; 11 (5): 624. doi: 10.3390/antibiotics11050624.
8. Yeom J., Imlay J. A., Park W. Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. The Journal of biological chemistry. 2010; 285 (29): 22689–22695. doi: 10.1074/jbc.M110.127456.
9. Xu T., Zhou F., Wang L., Wu S., Huang H. Metronidazole-resistant Clostridioides difficile: genomic and transcriptomic traits acquired under in-vitro metronidazole induction. International Journal of Antimicrobial Agents. 2022; 59 (5): 106570. doi: 10.1016/j.ijantimicag.2022.106570.
10. Deshpande A., Wu X., Huo W., Palmer K. L., Hurdle J. G. Chromosomal Resistance to Metronidazole in Clostridioides difficile Can Be Mediated by Epistasis between Iron Homeostasis and Oxidoreductases. Antimicrobial Agents and Chemotherapy. 2020; 64 (8): e00415–00420. doi: 10.1128/AAC.00415-20.
11. Freeman J., Vernon J., Pilling S., Morris K., Nicholson S., Shearman S., Longshaw C., Wilcox M. H. The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011–2014. Clinical Microbiology and Infection. 2018; 24 (7): 724–731. doi: 10.1016/j.cmi.2017.10.008.
12. Ghotaslou R., Bannazadeh Baghi H., Alizadeh N., Yekani M., Arbabi S., Memar M. Y., Mechanisms of Bacteroides fragilis resistance to metronidazole. Infection, Genetics and Evolution. 2018; 64: 156–163. doi: 10.1016/j.meegid.2018.06.020.
13. Boyanova L., Markovska R., Mitov I. Multidrug resistance in anaerobes. Future Microbiology. 2019; 14: 1055–1064. doi: 10.2217/fmb-2019-0132.
14. Tan T. Y., Ng L. S., Kwang L. L., Rao S., Eng L. C. Clinical characteristics and antimicrobial susceptibilities of anaerobic bacteremia in an acute care hospital. Anaerobe. 2017; 43: 69–74. doi: 10.1016/j.anaerobe.2016.11.009.
15. Yan L., Gopal A., Kashif S., Hazelton P., Lan M., Zhang W., Chen X. Metal organic frameworks for antibacterial applications. Chemical Engineering Journal. 2022; 435 (2): 134975. doi: 10.1016/j.cej.2022.134975.
16. Esfahanian M., Ghasemzadeh M. A., Razavian S. M. H. Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology. 2019; 47 (1): 2024–2030. doi: 10.1080/21691401.2019.1617729.
17. Unamuno X., Imbuluzqueta E., Salles F., Horcajada P., Blanco-Prieto M. J. Biocompatible porous metalorganic framework nanoparticles based on Fe or Zr for gentamicin vectorization. European journal of pharmaceutics and biopharmaceutics. 2018; 132: 11–18. doi: 10.1016/j.ejpb.2018.08.013.
18. Chavan C., Kamble S., Murthy A. V. R., Kale S. N. Ampicillin-mediated functionalized gold nanoparticles against ampicillin-resistant bacteria: strategy, preparation and interaction studies. Nanotechnology. 2020; 31 (21): 215604. doi: 10.1088/1361-6528/ab72b4.
19. Tang H., Zhou H., Zhang R. Antibiotic Resistance and Mechanisms of Pathogenic Bacteria in Tubo- Ovarian Abscess. Frontiers in cellular and infection microbiology. 2022; 12: 958210. doi: 10.3389/fcimb.2022.958210.
20. Aghaee M., Alishahi M.A., Manteghi F. Antimicrobial Activity of Ba-MOF. Chemistry Proceedings. 2022; 12 (1): 75. doi: 10.3390/ecsoc-26-13725.
21. Baptista P. V., McCusker M. P., Carvalho A., Ferreira D. A., Mohan N., Martins M., Fernandes A. R. Nano-strategies to fight multidrug resistant bacteria – “A battle of the titans”. Frontiers In Microbiology. 2018; 9: 1441. doi: 10.3389/fmicb.2018.01441.
22. Paunkov A., Sóki J., Leitsch D. Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Frontiers in microbiology. 2022; 13: 898453. doi: 10.3389/fmicb.2022.898453.
23. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine. 2017; 12: 1227-1249. doi: 10.2147/IJN.S121956.
24. Daeihamed M., Dadashzadeh S., Haeri A., Akhlaghi M. F. Potential of liposomes for enhancement of oral drug absorption. Current drug delivery. 2016; 14 (2): 852. doi: 10.2174/1567201813666160115125756.
25. Naseri N., Valizadeh H., Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced pharmaceutical bulletin. 2015; 5 (3): 305–313. doi: 10.15171/apb.2015.043.
26. Thukral D. K., Dumoga S., Mishra A. K. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Current drug delivery. 2014; 11 (6): 771–791.
27. Abed N., Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. International Journal of Antimicrobial Agents. 2014; 43 (6): 485–496.
28. Liu Y., Tee J. K., Chiu G. N. Dendrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Current pharmaceutical design. 2015; 21 (19): 2629–2642.
29. Kumar G., Chaudhary K., Mogha N. K., Kant A., Masram D. T. Extended Release of Metronidazole Drug Using Chitosan/Graphene Oxide Bionanocomposite Beads as the Drug Carrier. ACS Omega. 2021; 6 (31): 20433– 20444. doi: 10.1021/acsomega.1c02422.
30. Yalkaev А. G., Kataev V. A., Kildiyarov F. Kh. Metronidazole-based dosage forms with modified release. Meditsinskiy vestnik Bashkortostana = Bashkortostan Medical Journal. 2014; 9 (6): 112–115 (In Russ.).
31. Kumar G., Kant A., Kumar M., Masram D.T. Synthesis, characterizations and kinetic study of metal organic framework nanocomposite excipient used as extended release delivery vehicle for an antibiotic drug. Inorganica Chimica Acta. 2019; 496: 119036. doi: 10.1016/j.ica.2019.119036.
32. McKinlay A. C., Allan P., Renouf C. L., Duncan M. J., Wheatley P. S., Warrender S. J., Dawson D. M., Ashbrook S. E., Gil B., Marszalek B., Düren T., Williams J. J., Charrier C., Mercer D. K., Teat S. J., Morris R. E. Multirate delivery of multiple therapeutic agents from metal-organic frameworks. APL Materials. 2014; 2 (12): 124108. doi: 10.1063/1.4903290.
Review
For citations:
Kruglov E.E., Yudin M.A., Anokhin A.G. Resistance to metronidazole: characteristics of the problem, ways to overcome. Astrakhan medical journal. 2025;20(3):6-16. (In Russ.) https://doi.org/10.17021/1992-6499-2025-3-6-16
JATS XML


















