Preview

Astrakhan medical journal

Advanced search

The role of free-radical oxidation processes in the pathogenesis of early miscarriage

https://doi.org/10.29039/1992-6499-2023-1-27-38

Abstract

   Currently, despite the already known pathogenic factors and mechanisms of miscarriage, about 50 % of ones continue to be unspecified or idiopathic. In recent years, the role of oxidative stress in the pathogenesis of many diseases, including the female reproductive system and pregnancy complications, has been actively discussed.

   The purpose of the review is to analyze and provide information on the role of free-radical oxidation processes in the development and course of a pregnancy, both in normal and in miscarriage, as well as on the possible use of oxidative stress biomarkers in practical medicine, in order to assess the nature of the pathological process and the effectiveness of treatment.

   Understanding the processes of cell damage caused by oxidative stress can provide invaluable assistance not only in developing a personalized approach to each specific case of miscarriage, but also to expand knowledge, both scientific and clinical in this area of medicine.

About the Authors

O. G. Tishkova
Astrakhan State Medical University
Russian Federation

Olga G. Tishkova, Cand. Sci. (Med.), Associate Professor

Astrakhan



L. V. Dikareva
Astrakhan State Medical University
Russian Federation

Lyudmila V. Dikareva, Dr. Sci. (Med.), Professor, Head of the Department

Astrakhan



D. D. Tepliy
Astrakhan State University
Russian Federation

Dmitry D. Tepliy, Dr. Sci. (Biol.), Senior Researcher

Astrakhan



References

1. Ghosh J., Papadopoulou A., Devall A. J., Jeffery H. C., Beeson L. E., Do V., Price M. J., Tobias A., Tunçalp Ö., Lavelanet A., Gülmezoglu A. M., Coomarasamy A., Gallos I. D. Methods for managing miscarriage : a network meta-analysis // Cochrane Database Syst Rev. 2021. Vol. 6, no 6. P. 12602. doi: 10.1002/14651858.CD012602.pub2.

2. Barinov S. V., Artymuk N. V., Novikova O. N., Shamina I. V., Tirskaya Y. I., Belinina A. A., Lazareva O. V., Borisova T. V., Stepanov S. S., Di Renzo G. C. Analysis of risk factors and predictors of pregnancy loss and strategies for the management of cervical insufficiency in pregnant women at a high risk of preterm birth // The Journal of Maternal - Fetal and Neonatal Medicine. 2021. Vol. 34, no. 13. Р. 2071–2079. doi: 10.1080/14767058.2019.1656195.

3. DiTosto J. D., Liu C., Wall-Wieler E., Gibbs R. S., Girsen A. I., El-Sayed Y. Y., Butwick A. J., Carmichael S. L. Risk factors for postpartum readmission among women after having a stillbirth // Am J Obstet Gynecol MFM. 2021. Vol. 3, no. 4:100345. doi: 10.1016/j.ajogmf.2021.100345.

4. Delia I. C., Abad C., Rojas D., Toledo F., Vázquez C. M., Mate A., Sobrevia L., Marín R. Oxidative stress : Normal pregnancy versus preeclampsia // Biochimica et Biophysica Acta. Molecular Basis of Disease. 2020. Vol. 1866, no. 2: 165354. doi: 10.1016/j.bbadis.2018.12.005.

5. Moafi F., Momeni.M., Tayeba M., Rahimi S., Hajnasiri H. Spiritual Intelligence and Post-abortion Depression // Journal Religion and health. 2021. Vol. 60, no. 1. P. 326–334. doi: 10.1007/s10943-018-0705-0.

6. Emily C., Morgan N., Smath P., Staphanie A., Hamilton S. Potential genetic causes of miscarriage in euploid pregnancies : a systematic review // Human Reproduction Update. 2019. Vol. 25, no. 4. P. 452–472. doi: 10.1093/humupd/dmz015.

7. Turocy J. M., Rackow B. W. Uterine factor in recurrent pregnancy loss // Semin Perinatol. 2019. Vol. 43, no. 2. P. 74–79. doi: 10.1053/j.semperi.2018.12.003.

8. Kieffer T. E. C., Laskewitz A., Scherjon S. A., Faas M. M., Prins J. R. Memory T Cells in Pregnancy // Frontiers Immunology. 2019. Vol. 10. P. 625–649. doi: 10.3389/fimmu.2019.00625.

9. Larsen E. C., Christiansen O. B., Kolte A. M., Macklon N. New insights into mechanisms behind miscarriage // BMC Medicine. 2013. Vol. 11. P. 154–163. doi: 10.1186/1741-7015-11-154.

10. Gupta S., Agarwal A., Banerjee J., Alvarez J. G. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss : a systematic review // Obstetrical Gynecological Survey. 2007. Vol. 62, no. 5. P. 335–347. doi: 10.1097/01.ogx.0000261644.89300.df.

11. Leisegang K., Henkel R., Samanta L., Agarwal A. Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction // Academic Press. 2019. Vol. 11. P. 3–8. doi: 10.1016/B978-0-12-812501-4.00001-8.

12. Dunnill C., Patton T., Brennan J., Barrett J., Dryden M., Cooke J., Leaper D., Georgopoulos N. T. Reactive oxygen species (ROS) and wound healing : the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process // International Wound Journal. 2015. Vol. 14, no. 1. P. 89–96. doi: 10.1111/iwj.12557.

13. Simon-Szabo Z., Fogarasi E., Nemes-Nagy E., Denes L., Croitoru M., Szabo B. Oxidative stress and peripartum outcomes (Review) // Experimental and therapeutic medicine. 2021. Vol. 22, no. 1. P. 771. doi: 10.3892/etm.2021.10203.

14. Luis A., Sandalio L. M., Corpas F. J., Palma J. M., Barroso J. B. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling // Plant Physiology. 2006. Vol. 141, no. 2. P. 330–335. doi: 10.1104/pp.106.078204.

15. Koyani C. N., Flemmig J., Malle E., Arnhold J. Myeloperoxidase scavenges peroxynitrite : A novel anti-inflammatory action of the heme enzyme // Archives Biochemistry and Biophysics. 2015. Vol. 571. P. 1–9. doi: 10.1016/j.abb.2015.02.028.

16. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life // Plant Physiology. 2006. Vol. 141, no. 2. P. 312–322. doi: 10.1104/pp.106.077073.

17. Jastroch M., Divakaruni A. S., Mookerjee S., Treberg J. R., Brand M. D. Mitochondrial proton and electron leaks // Essays in Biochemistry. 2010. Vol. 47. P. 53–67. doi: 10.1042/bse0470053.

18. Schröder K. Redox Control of Angiogenesis // Antioxid Redox Signal. 2019. Vol. 30, no. 7. P. 960–971. doi: 10.1089/ars.2017.7429.

19. Villamor E., Moreno L., Mohammed R., Pérez-Vizcaíno F., Cogolludo A. Reactive oxygen species as mediators of oxygen signaling during fetal-to-neonatal circulatory transition // Free Radical Biology Medicine. 2019. Vol. 142. P. 82–96. doi: 10.1016/j.freeradbiomed.2019.04.008.

20. Yang Z., Min Z., Yu B. Reactive oxygen species and immune regulation // Internatiknal Revieews of Immunology. 2020. Vol. 39, no. 6. P. 292–298. doi: 10.1080/08830185.2020.1768251.

21. Badmaeva S. E., Teplyj D. L. The activity of antioxidant systems and the intensity of the processes of peroxidation in animals on the background of balneotherapy. Astrakhanskiy meditsinskiy zhurnal = Astrakhan medical journal. 2019; 14 (3): 58-66. URL: https://cyberleninka.ru/article/n/aktivnost-antioksidantnyh-sistem-i-intensivnost-protsessov-peroksidatsii-u-zhivotnyh-na-fone-balneoterapii (In Russ.).

22. Mirończuk-Chodakowska I., Witkowska A. M., Zujko M. E. Endogenous non-enzymatic antioxidants in the human body // Advances Medical Sciences. 2018. Vol 63, no. 1. P. 68–78. doi: 10.1016/j.advms.2017.05.005.

23. Al-Gubory K. H., Fowler K. H., Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes // The International Journal of Biochemistry and Cell Biology. 2010. Vol. 42, no. 10. Р.1634-1650. doi: 10.1016/j.biocel.2010.06.001.

24. Aboul-Soud M. A., Al-Othman A. M., El-Desoky G. E., Al-Othman Z. A., Yusuf K., Ahmad J., Al-Khedhairy A. A. Hepatoprotective effects of vitamin E/selenium against malathion-induced injuries on the antioxidant status and apoptosis-related gene expression in rats // The Journal Toxicological Sciences. 2011. Vol. 36, no. 3. Р. 285–296. doi: 10.2131/jts.36.285.

25. Maruhashi T., Kihara Y., Higashi Y. Bilirubin and Endothelial Function // Journal of Atherosclerosis and thrombosis. 2019. Vol. 26, no. 8. P. 688–696. doi: 10.5551/jat.RV17035.

26. Battelli M. G., Bortolotti M., Polito L., Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome // Biochimica et Biophysica Acta- Molecular Basis of Disease. 2018. Vol. 1864, no. 8. Р. 2557–2565. doi: 10.1016/j.bbadis.2018.05.003.

27. Watson M. E., Palmer E., Burton G. J. Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age // Placenta. 1997. Vol. 18, no. 4. P. 295–299. doi: 10.1016/s0143-4004(97)80064-1.

28. Ghneim H. K., Al-Sheikh Y. A., Alshebly M. M., Aboul-Soud M. A. Superoxide dismutase activity and gene expression levels in Saudi women with recurrent miscarriage // Molecular Medicine Reports. 2016. Vol. 13, no. 3. P. 2606–2612. doi: 10.3892/mmr.2016.4807.

29. Agarwal A., Gupta S., Sharma R. K. Role of oxidative stress in female reproduction // Reproductive Biology and Endocrinology. 2005. Vol. 14, no. 28. P. 28–35. doi: 10.1186/1477-7827-3-28.

30. Moore T. A., Ahmad I. M., Schmid K. K., Berger A. M., Ruiz R. J., Pickler R., Zimmerman M. C. Oxidative Stress Levels Throughout Pregnancy, at Birth, and in the Neonate // Biological Research for nursing. 2019. Vol. 21, no. 5. P. 485–494. doi: 10.1177/1099800419858670.

31. Al-Gubory K. H., Garrel C., Faure P., Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress // Reproductive Biomedicine Online. 2012. Vol. 25, no. 6. Р. 551–560. doi: 10.1016/j.rbmo.2012.08.004.

32. Lu J., Wang Z., Cao J., Chen Y., Dong Y. A novel and compact review on the role of oxidative stress in female reproduction // Reproductive Biology and Endocrinology. 2018. Vol.16, no. 1. P. 80–87. doi: 10.1186/s12958-018-0391-5.

33. Lappas M., Hiden U., Desoye G., Froehlich J., Hauguel-de Mouzon S., Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus // Antioxid Redox Signal. 2011. Vol. 15, no. 12. P. 3061–4100. doi: 10.1089/ars.2010.3765.

34. Toboła-Wróbel K., Pietryga M., Dydowicz P., Napierała M., Brązert J., Florek E. Association of Oxidative Stress on Pregnancy // Oxidative medicine and cellular longevity. 2020. Vol. 2020. P. 12. doi: 10.1155/2020/6398520.

35. Pereira R. D., De Long N. E., Wang R. C., Yazdi F. T., Holloway A. C., Raha S. Angiogenesis in the placenta: the role of reactive oxygen species signaling // BioMed Research International. 2015. Vol. 2015. P. 814543. doi: 10.1155/2015/814543.

36. Burton G. J., Jauniaux E., Watson A. L. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy : the Boyd collection revisited // American Journal of Obstetrics Gynecology. 1999. Vol. 181. P. 718–724. doi: 10.1016/S0002-9378(99)70518-1.

37. Cindrova-Davies T., van Patot M. T., Gardner L., Jauniaux E., Burton G. J., Charnock-Jones D. S. Energy status and HIF signalling in chorionic villi show no evidence of hypoxic stress during human early placental development // Molecular Human Reproduction. 2015. Vol. 2, № 3. P. 296–308. doi: 10.1093/molehr/gau105.

38. Burton G. J., Yung H. W., Murray A. J. Mitochondrial-Endoplasmic reticulum interactions in the trophoblast: Stress and senescence // Placenta. 2017. Vol. 52. P. 146–155.

39. Jauniaux E., Hempstock J., Greenwold N., Burton G. J. Trophoblastic Oxidative Stress in Relation to Temporal and Regional Differences in Maternal Placental Blood Flow in Normal and Abnormal Early Pregnancies // The American Journal of Pathology. 2003. Vol. 162, no. 1. P. 115–125. doi: 10.1016/S0002-9440(10)63803-5.

40. Mirthe H. M., Schoots H. M., Gordijn J. S., Scherjon S. A., Harry van Goor, Hillebrands J.-L. Oxidative stress in placental pathology // Placenta. 2018. Vol. 69. P. 153–161. doi: 10.1016/j.placenta.2018.03.003.

41. Pereira A. C., Martel F. Oxidative stress in pregnancy and fertility pathologies // Cell Biology Toxicology. 2014. Vol. 30, no. 5. P. 301–312. doi: 10.1007/s10565-014-9285-2.

42. Hempstock J., Jauniaux E., Greenwold N., Burton G. J. The contribution of placental oxidative stress to early pregnancy failure // Human Pathology. 2003. Vol. 34, no. 12. P. 1265–1275. doi: 10.1016/j.humpath.2003.08.006.

43. Hernandez I., Fournier T., Chissey A., Therond P., Slama A., Beaudeux J. L., Zerrad-Saadi A. NADPH oxidase is the major source of placental superoxide in early pregnancy : association with MAPK pathway activation // Scientific Reports. 2019. Vol. 9, no. 1. P. 1–2. doi: 10.1038/s41598-019-50417-4.

44. Ogawa K., Jwa S. C., Morisaki N., Sago H. Risk factors and clinical outcomes for placenta accreta spectrum with or without placenta previa // Archives of Gynecol. Obstetrics. 2021. Vol. 305. P. 607–615. doi: 10.1007/s00404-021-06189-2.

45. Aouache R., Biquard L., Vaiman D., Miralles F. Oxidative stress in preeclampsia and placental diseases // International Journal of Molecular Sciences. 2018. Vol. 19, no. 5. Р. 1496–1525. doi: 10.3390/ijms19051496.

46. Perrone S., Laschi E., Buonocore G. Biomarkers of oxidative stress in the fetus and in the newborn // Free Radic Biol Med. 2019. Vol. 142. P. 23–31. doi: 10.1016/j.freeradbiomed.2019.03.034.

47. Al-Sheikh Y. A., Ghneim H. K., Alharbi A. F., Alshebly M. M., Aljaser F. S., Aboul-Soud M. A-M. Molecular and biochemical investigations of key antioxidant / oxidant molecules in Saudi patients with recurrent miscarriage // Experimental and Therapeutic Medicine. 2019. Vol. 18, no. 6. P. 4450–4460. doi: 10.3892/etm.2019.8082.

48. Ramandeep K., Kapil G., Harkiran K. Correlation of enhanced oxidative stress with altered thyroid profile: Probable role in spontaneous abortion // International Journal of Applied and Basic Medical Research. 2017. Vol. 7, no. 1. P. 20–25. doi: 10.4103/2229-516X.198514. PMID: 28251103.

49. El-Far M., El-Sayed I. H., El-Motwally Ael-G., Hashem I. A., Bakry N. Tumor necrosis factor-alpha and oxidant status are essential participating factors in unexplained recurrent spontaneous abortions // Clinical Chemistry and Laboratory Medicine. 2007. Vol. 45, no. 7. P. 879–883. doi: 10.1515/CCLM.2007.138.

50. Torkzahrani S., Ataei P. J., Hedayati M., Khodakarim S., Sheikhan Z., Khoramabadi M., Sadrae A. Oxidative stress markers in early pregnancy loss : a case-control study // Int. J. Women’s Health Rep. Sci. 2019. Vol. 7. P. 61–66. doi: 10.15296/ijwhr.2019.10.

51. Urbaniak S. K., Boguszewska K., Szewczuk M., Kaźmierczak-Barańska J., Karwowski B. T. 8-Oxo-7,8-Dihydro-2'-Deoxyguanosine (8-oxodG) and 8-Hydroxy-2'-Deoxyguanosine (8-OHdG) as a Potential Biomarker for Gestational Diabetes Mellitus // (GDM) Development. Molecules. 2020. Vol. 25, no. 1. P. 202–208. doi: 10.3390/molecules25010202.

52. Dalle-Donne R., Rossi D., Giustarini A., Milzani R. Colombo Protein carbonyl groups as biomarkers of oxidative stress // Clinica Chimica Acta. 2003. Vol. 329, no. 1–2. P. 23–38. doi: 10.1016/S0009-8981(03)00003-2.

53. Tishkova O. G., Dikareva L. V., Ayupova A. K., Teplyj D. L. A new approach to evaluating the effectiveness of preconception preparation in women with a history of early fetal loss. Meditsinskiy vestnik Severnogo Kavkaza = Medical Bulletin of the North Caucasus. 2018; 1 (1-1): 25-28. doi: 10.14300/mnnc.2018.13007. (In Russ.).

54. Radak Z., Boldogh I. 8-Oxo-7,8-dihydroguanine : links to gene expression, aging, and defense against oxidative stress // Free radical biology and medicine. 2010. Vol. 15, no. 49 (4). P. 587–596. doi: 10.1016/j.freeradbiomed.2010.05.008.

55. Valavanidis A., Vlachogianni T., Fiotakis C.J. 8-hydroxy-2’ - deoxyguanosine (8-OHdG) : A critical biomarker of oxidative stress and carcinogenesis // Journal Environmental science and health C Environ. Carcinogenesis and. Ecotoxicology reviews. 2009. Vol. 27, no. 2. P. 120–139. doi: 10.1080/10590500902885684.

56. Ba X., Boldogh R. 8-Oxoguanine DNA glycosylase 1 : Beyond repair of the oxidatively modified base lesions // Redox Biology. 2018. Vol. 14. P. 669–678. doi: 10.1016/j.redox.2017.11.008.

57. Cadet J., Wagner J. R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation // Cold Spring Harbor Perspectives Biology. 2013. Vol. 1, no. 5 (2). P. a012559. doi: 10.1101/cshperspect.a012559.

58. Hung T. H., Lo L. M., Chiu T. H, Li M. J., Yeh Y. L., Chen S. F., Hsieh T. T. A longitudinal study of oxidative stress and antioxidant status in women with uncomplicated pregnancies throughout gestation // Scientific Reports. 2010. Vol. 17, no. 4. P. 401–409. doi: 10.1177/1933719109359704.

59. Tempfer C., Unfried G., Zeillinger R., Hefler L., Nagele F., Huber J. C. Endothelial nitric oxide synthase gene polymorphism in women with idiopathic recurrent miscarriage // Human Reproduction. 2001. Vol. 16, no. 8. P. 1644–1647. doi: 10.1093/humrep/16.8.1644.


Review

For citations:


Tishkova O.G., Dikareva L.V., Tepliy D.D. The role of free-radical oxidation processes in the pathogenesis of early miscarriage. Astrakhan medical journal. 2023;18(1):27-38. (In Russ.) https://doi.org/10.29039/1992-6499-2023-1-27-38

Views: 972


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-6499 (Print)