EVALUATION OF THE LYTIC ACTIVITY OF BACTERIOPHAGE AGAINST STAPHYLOCOCCUS AUREUS
https://doi.org/10.48612/agmu/2022.17.4.78.84
Abstract
About the Authors
G. N. GenatullinaRussian Federation
Guzel N. Genatullina, Cand. Sci. (Biol.), Deputy Head of the Research Center
Astrakhan
A. L. Yasenyavskaya
Russian Federation
Anna L. Yasenyavskaya, Cand. Sci. (Med.), Head of the Research Center, Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology
Astrakhan
A. A. Tsibizova
Russian Federation
Alexandra A. Tsibizova, Cand. Sci. (Pharm.), Associate Professor of Department
Astrakhan
References
1. Aslam B., Wang W., Arshad M. I., Khurshid M., Muzammil S., Rasool M. H., Nisar M. A., Alvi R. F., Aslam M. A., Qamar M. U., Salamat M. K. F.,Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance. 2018; 11: 1645. doi: 10.2147/IDR.S173867.
2. MacLean R. C., San Millan A. The evolution of antibiotic resistance. Science. 2019; 365 (6458): 1082–1083. doi: 10.1126/science.aax3879.
3. Peterson E., Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in microbiology. 2018; 9: 2928. doi: 10.3389/fmicb.2018.02928.
4. Guo Y., Song G., Sun M., Wang J., Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in cellular and infection microbiology. 2020; 10: 107. doi: 10.3389/fcimb.2020.00107.
5. Principi N., Silvestri E., Esposito S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Frontiers in pharmacology. 2019; 10: 513. doi: 10.3389/fphar.2019.00513.
6. Domingo-Calap P., Delgado-Martínez J. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics. 2018; 7 (3): 66. doi: 10.3390/antibiotics7030066.
7. Fabijan A. P., Lin R. C., Ho J., Maddocks S., Ben Zakour N. L., Iredell J. R. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nature microbiology. 2020; 5 (3): 465–472. doi: 10.1038/s41564-019-0634-z.
8. Liu J., Wang N., Liu Y., Jin Y., Ma M. The antimicrobial spectrum of lysozyme broadened by reductive modification. Poultry science. 2018; 97 (11): 3992–3999. doi: 10.3382/ps/pey245.
9. Rai A., Khairnar K. Overview of the risks of Staphylococcus aureus infections and their control by bacteriophages and bacteriophage-encoded products. Brazilian journal of microbiology. 2021; 52 (4): 2031–2042. doi: 10.1007/s42770-021-00566-4.
10. Vakarina A. A., Aleshkin A. V., Rubal'skiy E. O., Stepanova T. F., Kiseleva I. A., Kataeva L. V. Effect of virulent bacteriophages on antibiotic sensitivity of Staphylococcus aureus bacteria. Astrakhanskiy meditsinskiy zhurnal = Astrakhan Medical Journal. 2020; 15 (4): 29–39. doi: 10.17021/2020.15.4.29.39 (In Russ.).
11. Álvarez A., Fernández L., Gutiérrez D., Iglesias B., Rodríguez A., García P. Methicillin-resistant Staphylococcus aureus in hospitals: Latest trends and treatments based on bacteriophages. Journal of Clinical Microbiology. 2019; 57 (12): e01006-19. doi: 10.1128/JCM.01006-19.
12. Kuznetsova M. V., Mammaeva M. G., Nesterova L. Yu., Kirichenko L. V., Demakov V. A. Antibiotic sensitivity and adaptive properties of staphylococci isolated from terrestrial salt facilities. Astrakhanskiy meditsinskiy zhurnal = Astrakhan Medical Journal. 2022; 17 (2): 64–76. doi: 10.48612/agmu/2022.17.2.64.76. (In Russ.).
13. Chang Y., Bai J., Lee J. H., Ryu S. Mutation of a Staphylococcus aureus temperate bacteriophage to a virulent one and evaluation of its application. Food microbiology. 2019; 82: 523–532. doi: 10.1016/j.fm.2019.03.025.
14. Guidelines for susceptibility testing of microorganisms to antibacterial agents (Methodical instructions MI 4.2.1890–04). Clinical microbiology and antimicrobial chemotherapy. 2004; 6 (4): 306–357 (In Russ.). URL: https://cmac-journal.ru/publication/2004/4/cmac-2004-t06-n4-p306/cmac-2004-t06-n4-p306.pdf.
15. Tkhilaishvili T., Wang L., Tavanti A., Trampuz A., Di Luca M. Antibacterial efficacy of two commercially available bacteriophage formulations, staphylococcal bacteriophage and PYO bacteriophage, against methicillin-resistant Staphylococcus aureus: Prevention and eradication of biofilm formation and control of a systemic infection of Galleria mellonella larvae. Frontiers in microbiology. 2020; 11: 110. doi: 10.3389/fmicb.2020.00110.
16. Kizziah J. L., Manning K. A., Dearborn A. D., Dokland T. Structure of the mechanism of recognition and penetration of host cells of the bacteriophage of Staphylococcus aureus. Pathogens of PLoS. 2020; 16 (2): e1008314. doi: 10.1371/journal.ppat.1008314.
17. Horiuk Y., Kukhtyn M., Kernychnyi S., Laiter-Moskaliuk S., Prosyanyi S., Boltyk, N. Sensitivity of Staphylococcus aureus cultures of different biological origin to commercial bacteriophages and phages of Staphylococcus aureus var. bovis. Veterinary world. 2021; 14 (6): 1588–1593. doi: 10.14202/vetworld.2021.1588-1593.
18. Kebriaei R., Lev K., Morrisette T., Stamper K. C., Abdul-Mutakabbir J. C., Lehman S. M., Rybak M. J. Bacteriophage-antibiotic combination strategy: An alternative against methicillin-resistant phenotypes of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. 2020; 64 (7): e00461-20. doi: 10.1128/AAC.00461-20.
19. Ujmajuridze A., Chanishvili N., Goderdzishvili M., Leitner L., Mehnert U., Chkhotua A., Sybesma W. Adapted bacteriophages for treating urinary tract infections. Frontiers in microbiology. 2018; 9: 1832. doi: 10.3389/fmicb.2018.01832.
20. Torres-Barceló C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerging microbes & infections. 2018; 7 (1): 168. doi: 10.1038/s41426-018-0169-z.
Review
For citations:
Genatullina G.N., Yasenyavskaya A.L., Tsibizova A.A. EVALUATION OF THE LYTIC ACTIVITY OF BACTERIOPHAGE AGAINST STAPHYLOCOCCUS AUREUS. Astrakhan medical journal. 2022;17(4):78-84. (In Russ.) https://doi.org/10.48612/agmu/2022.17.4.78.84