

ИЗМЕНЕНИЯ ФАЗОВОГО СОСТАВА БИОМИНЕРАЛА ТАЗОВОЙ КОСТИ У ЮВЕНИЛЬНЫХ КРЫС СО СТРЕПТОЗОТОЦИН-ИНДУЦИРОВАННЫМ ДИАБЕТОМ ПОСЛЕ ПЕРФОРАЦИИ БОЛЬШЕБЕРЦОВЫХ КОСТЕЙ
https://doi.org/10.17021/2021.16.4.24.29
Аннотация
Цель: установить изменения фазового состава биоминерала тазовой кости у ювенильных крыс со стрептозотоцин-индуцированным диабетом после перфорации большеберцовых костей. Материалы и методы. Индукцию диабета производили однократным введением стрептозотоцина внутрибрюшинно в дозе 55 мг/кг (35 крыс массой 135-150 г в возрасте 3 месяцев). Хирургическую перфорацию большеберцовых костей диаметром 2,0 мм проводили в проксимальном метадиафизе (35 крыс). 35 крысам хирургическую перфорацию проводили после индуцирования диабета. Определяли содержание в биоминерале тазовой кости витлокита, кальцита и гидроксилапатита. Результаты. Хирургическая перфорация большеберцовых костей приводила к дестабилизации фазового состава биоминерала тазовых костей с пиком отклонений к 30 суткам после операции. При стрептозотоциновом диабете дестабилизация фазового состава биоминерала тазовых костей прогрессировала до 30 суток; к 90 суткам доли витлокита и кальцита превышали контроль на 13,33 % и 6,77 %, а доля гидроксилапатита снижалась на 4,75 %. Сочетание перфорации и диабета приводило к усугублению аморфности биоминерала тазовых костей с 60 суток, к 90 суткам доля витлокита превышала значения группы с перфорацией большеберцовых костей на 6,03 %, а доля гидроксилапатита снижалась на 2,18 %. Заключение. Хирургическая перфорация большеберцовых костей при стрептозотоциновом диабете у ювенильных крыс приводит к усугублению аморфности биоминерала тазовых костей с 60 суток после манипуляции.
Список литературы
1. Kanazawa I., Sugimoto T. Diabetes Mellitus-induced Bone Fragility // Intern. Med. 2018. Vol. 57, no. 19. P. 2773-2785.
2. Valderrábano R. J., Linares M. I. Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification // Clin. Diabetes Endocrinol. 2018. Vol. 4. P. 9.
3. Romero-Díaz C., Duarte-Montero D., Gutiérrez-Romero S. A., Mendivil C. O. Diabetes and Bone Fragility // Diabetes Ther. 2021. Vol. 12, no. 1. P. 71-86.
4. Laugesen E., Østergaard J. A., Leslie R. D. G. Latent autoimmune diabetes of the adult: current knowledge and uncertaint // Diabet. Med. 2015. Vol. 32, no. 7. P. 843-852.
5. Shah V. N., Carpenter R. D., Ferguson V. L., Schwartz A. V. Bone health in type 1 diabetes // Curr. Opin. Endocrinol. Diabetes Obes. 2018. Vol. 25, no. 4. P. 231-236.
6. Devaraja J., Jacques R., Paggiosi M., Clark C., Dimitri P. Impact of Type 1 Diabetes Mellitus on Skeletal Integrity and Strength in Adolescents as Assessed by HRpQCT // JBMR Plus. 2020. Vol. 4, no.11. P. e10422.
7. Rees D. A., Alcolado J. C. Animal models of diabetes mellitus // Diabet. Med. 2005. Vol. 22, no. 4. P. 359-370.
8. Колб В. Г., Камышников В. С. Справочник по клинической химии. Минск : Беларусь, 1982. 336 с.
9. Лузин В. И., Ивченко Д. В., Панкратьев А. А., Скоробогатов А. Н., Лубенец А. А. Методика моделирования костного дефекта у лабораторных животных // Український медичний альманах. 2005. no. 2 (додаток). - С. 162.
10. Миркин Л. И. Рентгеноструктурный анализ. Индицирование рентгенограмм: справочное руководство. М. : Наука, 1981. 496 c.
11. Лузин В. И. Применение рентгеноструктурного анализа для исследования фазового состава костного минерала // Український морфологічний альманах. 2005. Т. 3, № 4. C. 61-64.
12. Зайцев В. М., Лифляндский И. Г., Маринкин В. И. Прикладная медицинская статистика. Учебное пособие. СПб. : Фолиант, 2003. 432 с.
13. Osipov B., Emami A. J., Christiansen B. A. Systemic Bone Loss After Fracture // Clin. Rev. Bone Miner. Metab. 2018. Vol. 16, no. 4. P. 116-130.
14. Almeida M. Aging and Oxidative Stress: A New Look at Old Bone // IBMS BoneKEy. 2010. Vol. 7, no. 10. P. 340-352.
15. Emami A. J., Toupadakis C. A., Telek S. M., Fyhrie D. P., Yellowley C. E., Christiansen B. A. Age dependence of systemic bone loss and recovery following femur fracture in mice //j. Bone Miner Res. 2019. Vol. 34, no. 1. P. 157-170.
16. Suarez-Bregua P. Guerreiro P. M., Rotllant J. Stress, Glucocorticoids and Bone: A Review From Mammals and Fish // Front. Endocrinol. (Lausanne). 2018. Vol. 9. P. 526.
17. Yamamoto M., Sugimoto T. Advanced Glycation End Products, Diabetes, and Bone Strength // Curr. Osteoporos. Rep. 2016. Vol. 14, № 6. P. 320-326.
18. Alatawi F. S., Faridi U. A., Alatawi M. S. Effect of treatment with vitamin D plus calcium on oxidative stress in streptozotocin-induced diabetic rats // Saudi Pharm. J. 2018. Vol. 26, no. 8. P. 1208-1213.
19. Hamada Y., Fujii H., Fukagawa M. Role of oxidative stress in diabetic bone disorder // Bone. 2009. Vol. 45 (Suppl. 1). P. S35-S38.
Рецензия
Для цитирования:
Торба А.В. ИЗМЕНЕНИЯ ФАЗОВОГО СОСТАВА БИОМИНЕРАЛА ТАЗОВОЙ КОСТИ У ЮВЕНИЛЬНЫХ КРЫС СО СТРЕПТОЗОТОЦИН-ИНДУЦИРОВАННЫМ ДИАБЕТОМ ПОСЛЕ ПЕРФОРАЦИИ БОЛЬШЕБЕРЦОВЫХ КОСТЕЙ. Астраханский медицинский журнал. 2021;16(4):24-29. https://doi.org/10.17021/2021.16.4.24.29
For citation:
Torba A.V. CHANGES IN PHASE COMPOSITION OF PELVIC BIOMINERAL IN JUVENILE RATS WITH STREPTOZOTOCIN-INDUCED DIABETES AFTER PERFORATION OF TIBIA. Astrakhan medical journal. 2021;16(4):24-29. (In Russ.) https://doi.org/10.17021/2021.16.4.24.29