Preview

Astrakhan medical journal

Advanced search
Open Access Open Access  Restricted Access Subscription Access

CHANGES IN PHASE COMPOSITION OF PELVIC BIOMINERAL IN JUVENILE RATS WITH STREPTOZOTOCIN-INDUCED DIABETES AFTER PERFORATION OF TIBIA

https://doi.org/10.17021/2021.16.4.24.29

Abstract

The study aims to investigate changes in phase contents of bone mineral of the hipbone in juvenile streptozotocin-induced diabetic rats after surgical perforation of the tibia. Material and methods. Diabetes (35 animals with a weight of 135-150 g at the age of 3 months) was induced by a single intraperitoneal injection of streptozotocin in a dosage of 55 mg per kg of body weight. Surgical perforation of the tibia was modelled as 2 mm through the opening in the proximal metadiaphysis (35 animals). Another group comprised 35 animals with both perforation and diabetes. 35 intact animals comprised the control group. Using the method of internal control, the content in bone mineral of the hipbone whitlockite, calcite and hydroxylapatite was determined. Results. Surgical perforation of the tibia results in instability of phase contents of bone mineral of the hipbone; manifestations peak here was registered on the 30th day of observation. In diabetic animals destabilization of the phase composition of bone, minerals progressed during the experiment. By the 90th day shares of whitlockite and calcite exceeded those of the controls by 13,33 % and 6,77 % while the share of hydroxylapatite decreased by 4,75 %. Surgical perforation of the tibia in diabetic animals resulted in the more marked increase of bone mineral of the hipbone amorphousness from the 60th day of observation; by the 90th-day shares of whitlockite this in rats with perforation by 6,03 % while hydroxylapatite share decreased by 2,18 %. Conclusion. Surgical perforation of the tibia in diabetic juvenile rats increases the amorphousness of bone mineral of the hipbone, which grows beginning from the 60th day after the operation.

About the Author

A. V. Torba
Luhansk State Medical University named after St. Luke
Russian Federation


References

1. Kanazawa I., Sugimoto T. Diabetes Mellitus-induced Bone Fragility // Intern. Med. 2018. Vol. 57, no. 19. P. 2773-2785.

2. Valderrábano R. J., Linares M. I. Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification // Clin. Diabetes Endocrinol. 2018. Vol. 4. P. 9.

3. Romero-Díaz C., Duarte-Montero D., Gutiérrez-Romero S. A., Mendivil C. O. Diabetes and Bone Fragility // Diabetes Ther. 2021. Vol. 12, no. 1. P. 71-86.

4. Laugesen E., Østergaard J. A., Leslie R. D. G. Latent autoimmune diabetes of the adult: current knowledge and uncertaint // Diabet. Med. 2015. Vol. 32, no. 7. P. 843-852.

5. Shah V. N., Carpenter R. D., Ferguson V. L., Schwartz A. V. Bone health in type 1 diabetes // Curr. Opin. Endocrinol. Diabetes Obes. 2018. Vol. 25, no. 4. P. 231-236.

6. Devaraja J., Jacques R., Paggiosi M., Clark C., Dimitri P. Impact of Type 1 Diabetes Mellitus on Skeletal Integrity and Strength in Adolescents as Assessed by HRpQCT // JBMR Plus. 2020. Vol. 4, no.11. P. e10422.

7. Rees D. A., Alcolado J. C. Animal models of diabetes mellitus // Diabet. Med. 2005. Vol. 22, no. 4. P. 359-370.

8. Колб В. Г., Камышников В. С. Справочник по клинической химии. Минск : Беларусь, 1982. 336 с.

9. Лузин В. И., Ивченко Д. В., Панкратьев А. А., Скоробогатов А. Н., Лубенец А. А. Методика моделирования костного дефекта у лабораторных животных // Український медичний альманах. 2005. no. 2 (додаток). - С. 162.

10. Миркин Л. И. Рентгеноструктурный анализ. Индицирование рентгенограмм: справочное руководство. М. : Наука, 1981. 496 c.

11. Лузин В. И. Применение рентгеноструктурного анализа для исследования фазового состава костного минерала // Український морфологічний альманах. 2005. Т. 3, № 4. C. 61-64.

12. Зайцев В. М., Лифляндский И. Г., Маринкин В. И. Прикладная медицинская статистика. Учебное пособие. СПб. : Фолиант, 2003. 432 с.

13. Osipov B., Emami A. J., Christiansen B. A. Systemic Bone Loss After Fracture // Clin. Rev. Bone Miner. Metab. 2018. Vol. 16, no. 4. P. 116-130.

14. Almeida M. Aging and Oxidative Stress: A New Look at Old Bone // IBMS BoneKEy. 2010. Vol. 7, no. 10. P. 340-352.

15. Emami A. J., Toupadakis C. A., Telek S. M., Fyhrie D. P., Yellowley C. E., Christiansen B. A. Age dependence of systemic bone loss and recovery following femur fracture in mice //j. Bone Miner Res. 2019. Vol. 34, no. 1. P. 157-170.

16. Suarez-Bregua P. Guerreiro P. M., Rotllant J. Stress, Glucocorticoids and Bone: A Review From Mammals and Fish // Front. Endocrinol. (Lausanne). 2018. Vol. 9. P. 526.

17. Yamamoto M., Sugimoto T. Advanced Glycation End Products, Diabetes, and Bone Strength // Curr. Osteoporos. Rep. 2016. Vol. 14, № 6. P. 320-326.

18. Alatawi F. S., Faridi U. A., Alatawi M. S. Effect of treatment with vitamin D plus calcium on oxidative stress in streptozotocin-induced diabetic rats // Saudi Pharm. J. 2018. Vol. 26, no. 8. P. 1208-1213.

19. Hamada Y., Fujii H., Fukagawa M. Role of oxidative stress in diabetic bone disorder // Bone. 2009. Vol. 45 (Suppl. 1). P. S35-S38.


Review

For citations:


Torba A.V. CHANGES IN PHASE COMPOSITION OF PELVIC BIOMINERAL IN JUVENILE RATS WITH STREPTOZOTOCIN-INDUCED DIABETES AFTER PERFORATION OF TIBIA. Astrakhan medical journal. 2021;16(4):24-29. (In Russ.) https://doi.org/10.17021/2021.16.4.24.29

Views: 146


ISSN 1992-6499 (Print)