Preview

Астраханский медицинский журнал

Расширенный поиск

Анализ резистентности Staphylococcus aureus в антибиотическую эпоху (литературный обзор)

https://doi.org/10.17021/1992-6499-2025-2-27-50

Аннотация

Сегодня проблема устойчивости к противомикробным препаратам некоторых представителей грамположительных бактерий является одной из глобальных угроз здоровью населения. Более чем у 30 % населения определяется бессимптомное носительство Staphylococcus aureus на поверхности эпителия и слизистых оболочках, в 60 % случаев определяется его транзиторное носительство. Проблема заключается не только в повсеместной распространенности и высокой частоте выделения золотистого стафилококка, но и в нарастающем уровне лекарственной устойчивости S. aureus. Цель исследования – провести всесторонний анализ механизмов устойчивости Staphylococcus aureus к современным антибактериальным препаратам, учитывая широкое распространение резистентных форм этого патогена. Материалами и методами исследования послужили литературные обзоры последних достижений в области изучения молекулярных основ резистентности и взаимодействия стафилококков с различными классами антибиотиков, таких как β-лактамы, гликопептиды, фторхинолоны, а также новые подходы к созданию эффективных терапевтических стратегий. Результаты. Основные результаты обзора указывают на разнообразие механизмов, используемых Staphylococcus aureus для противостояния антибиотикам. Среди них выделяются способность производить β-лактамазы, разрушение структуры пептидогликана и адаптация клеточного метаболизма, позволяющая минимизировать влияние антибактериальных агентов. Сделан акцент на важности комбинирования антибиотиков разных групп, таких как β-лактамы и гликопептиды, для минимизации риска развития резистентности. Заключение. Представленная работа выявила необходимость дальнейшего изучения путей клеточного деления, синтеза нуклеиновых кислот и пептидогликана в качестве возможных точек приложения будущих антибактериальных препаратов. Особое внимание в работе уделено новому направлению – изучению ингибиторов биосинтеза жирных кислот и белка FtsZ, играющего ключевую роль в клеточном делении. Таким образом, исследование позволяет понять суть молекулярных процессов, лежащих в основе устойчивости Staphylococcus aureus, и формирует базу для дальнейших разработок инновационных подходов к терапии стафилококковых инфекций.

Об авторах

И. С. Степаненко
Волгоградский государственный медицинский университет
Россия

Ирина Семеновна Степаненко - доктор медицинских наук, доцент, заведующий кафедрой микробиологии.

Волгоград



В. А. Косов
Волгоградский государственный медицинский университет
Россия

Вячеслав Александрович Косов - аспирант кафедры микробиологии.

Волгоград



Л. В. Михайлова
Волгоградский государственный медицинский университет
Россия

Людмила Викторовна Михайлова - кандидат медицинснких наук, доцент кафедры микробиологии.

Волгоград



А. С. Тимофеева
Волгоградский государственный медицинский университет
Россия

Анна Самовна Тимофеева - кандидат медицинских наук, доцент кафедры микробиологии.

Волгоград



Список литературы

1. Tong S. Y., Davis J. S., Eichenberger E., Holland T. L., Fowler Jr. V. G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management // Clinical microbiology reviews. 2015. Vol. 28, no. 3. P. 603–661. https://doi.org/10.1128/cmr.00134-14.

2. Creech C. B., Al-Zubeidi D. N., Fritz S. A. Prevention of recurrent staphylococcal skin infections Infectious Disease Clinics // North America. 2015. Vol. 29, no. 3. P. 429–464. https://doi.org/10.1016/j.idc.2015.05.007.

3. The World Health Organization, EMP Department Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. URL: https://remed.org/wp-content/uploads/2017/03/lobalpriority-list-of-antibiotic-resistant-bacteria-2017.pdf.

4. Sharif S., Singh M., Kim S. J., Schaefer J. Staphylococcus aureus peptidoglycan tertiary structure from carbon-13 spin diffusion // Journal of the American Chemical Society. 2009. Vol. 131, no. 20. P. 7023–7030. doi: 10.1021/ja808971c.

5. Labischinski H. Consequences of the interaction of β-lactam antibiotics with penicillin binding proteins from sensitive and resistant Staphylococcus aureus strains // Medical microbiology and immunology. 1992. Vol. 181, no. 5. P. 241–265. https://doi.org/10.1007/BF00198846/

6. De Lencastre H., Jonge B. L. M., Matthews P. R., Tomasz A. J. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin // Microbial drug resistance. 1999. Vol. 5, no. 3. P. 163–175. https://doi.org/10.1089/mdr.1999.5.163.

7. Labischinski H., Barnickel G., Bradaczek H., Giesbrecht P. On the Secondary and Tertiary Structure of Murein: Low and Medium‐ Angle X‐ Ray Evidence against Chitin‐ Based Conformations of Bacterial Peptidoglycan // European Journal of Biochemistry. 1979. Vol. 95, no. 1. P. 147–155. https://doi.org/10.1111/j.14321033.1979.tb12949.x.

8. Heijenoort J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan // Glycobiology. 2001. Vol. 11, no. 3. P. 25R–36R. https://doi.org/10.1093/glycob/11.3.25R.

9. Courtney H. S., Hasty D. L., Dale J. B. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci // Annals of medicine. 2002. Vol. 34, no. 2. P. 77–87. https://doi.org/10.1080/07853890252953464.

10. Götz F., Peters G. Colonization of medical devices by coagulase‐ negative staphylococci // Infections associated with indwelling medical devices. 2000. P. 55–88. https://doi.org/10.1128/9781555818067.ch4

11. Proctor R. A. Toward an understanding of biomaterial infections: a complex interplay between the host and bacteria //The Journal of Laboratory and Clinical Medicine. 2000. Vol. 135, no. 1. P. 14–15.

12. Von Eiff C., Heilmann C., Peters G. New aspects in the molecular basis of polymer-associated infections due to staphylococci // European Journal of Clinical Microbiology and Infectious Diseases. 1999. Vol. 18. P. 843–846.

13. Gerke C., Kraft A., Sußmuth R., Schweitzer O., Götz F. Characterization of theNAcetylglucosaminyltransferase Activity Involved in the Biosynthesis of the Staphylococcus epidermidisPolysaccharide Intercellular Adhesin // Journal of Biological Chemistry. 1998. Vol. 273, no. 29. P. 18586–18593.

14. Sonohara R., Muramatsu N., Ohshima H., Kondo T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements // Biophysical chemistry. 1995. Vol. 55, no. 3. P. 273–277.

15. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Gotz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides // Journal of Biological Chemistry. 1999. Vol. 274, no. 13. P. 8405–8410.

16. Van Loosdrecht M. C., Lyklema J., Norde W., Schraa G., Zehnder A. The role of bacterial cell walls hydrophobicity in adhesion // Applied and environmental microbiology. 1987. Vol. 53, no. 8. P. 1893–1897.

17. Ghaedmohammadi S., Ahmadian G. The first report on the sortase-mediated display of bioactive protein A from Staphylococcus aureus (SpA) on the surface of the vegetative form of Bacillus subtilis // Microbial Cell Factories. 2021. Vol. 20. P. 1–11. doi: 10.1186/s12934-021-01701-4.

18. A Pathogen's Swiss Army Knife. Small Things Considered. URL: https://schaechter.asmblog.org/schaechter/2009/03/a-pathogens-swiss-army-knife.html.

19. Kopp U., Roos M., Wecke J., Labischinski H. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? // Microbial drug resistance. 1996. Vol. 2, no. 1. P. 29–41. doi: 10.1089/mdr.1996.2.29.

20. Ambler R. P. The structure of β-lactamases // Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 1980. Vol. 289, no. 1036. P. 321–31. doi: 10.1098/rstb.1980.0049.

21. Bonomo R. A. β-Lactamases: a focus on current challenges // Cold Spring Harbor perspectives in medicine. 2017. Vol. 7, no. 1. P. a025239. doi: 10.1101/cshperspect. a025239.

22. Hedstrom L. Serine protease mechanism and specificity // Chemical reviews. 2002. Vol. 102, no. 12. P. 4501–4524. doi: 10.1021/cr000033x.

23. Palzkill T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases // Frontiers in molecular biosciences. 2018. Vol. 5. P. 16. doi: 10.3389/fmolb.2018.00016.

24. Bryan L. E. Mechanisms of plasmid mediated drug resistance // Plasmids and Transposons. Academic Press, 1980. P. 57–81.

25. Jensen S. O., Lyon B. R. Genetics of antimicrobial resistance in Staphylococcus aureus // Future microbiology. 2009. Vol. 4, no. 5. P. 565–582.

26. Giesbrecht P., Kersten T., Maidhof H., Wecke J. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin // Microbiology and molecular biology reviews. 1998. Vol. 62, no. 4. P. 1371–1414.

27. Walsh C., Wencewicz T. Antibiotics: challenges, mechanisms, opportunities. John Wiley & Sons, 2020.

28. Cho H., Uehara T., Bernhardt T. G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery // Cell. 2014. Vol. 159, no. 6. P. 1300–1311.

29. Massova I., Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and βlactamases // Antimicrobial agents and chemotherapy. 1998. Vol. 42, no. 1. P. 1–17.

30. Lowy F. D. Antimicrobial resistance: the example of Staphylococcus aureus // The Journal of clinical investigation. 2003. Vol. 111, no. 9. P. 1265–1273.

31. Hartman B. J., Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus // Journal of bacteriology. 1984. Vol. 158, no. 2. P. 513–516.

32. Peacock S. J., Paterson G. K. Mechanisms of methicillin resistance in Staphylococcus aureus // Annual review of biochemistry. 2015. Vol. 84, no. 1. P. 577–601.

33. Utsui Y., Yokota T. Role of an altered penicillin-binding protein in methicillin-and cephem-resistant Staphylococcus aureus // Antimicrobial agents and chemotherapy. 1985. Vol. 28, no. 3. P. 397–403.

34. Lim D., Strynadka N. C. J. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus // Nature structural biology. 2002. Vol. 9, no. 11. P. 870–876.

35. Pinho M. G., de Lencastre H., Tomasz A. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci // Proceedings of the National Academy of Sciences. 2001. Vol. 98, no. 19. P. 10886–10891.

36. Müller S., Wolf A. J., Iliev I. D., Berg B. L., Underhill D. M., Liu G. Y. Poorly cross-linked peptidoglycan in MRSA due to mecA induction activates the inflammasome and exacerbates immunopathology // Cell host & microbe. 2015. Vol. 18, no. 5. P. 604–612.

37. Paterson G. K., Harrison E. M., Holmes M. A. The emergence of mecC methicillin-resistant Staphylococcus aureus // Trends in microbiology. 2014. Vol. 22, no. 1. P. 42–47.

38. DeLeo F. R., Otto M., Kreiswirth B. N., Chambers H. F. Community-associated meticillin-resistant Staphylococcus aureus // The Lancet. 2010. Vol. 375, no. 9725. P. 1557–1568.

39. Uhlemann A. C., Otto M., Lowy F. D., DeLeo F. R. Evolution of community-and healthcare-associated methicillin-resistant Staphylococcus aureus // Infection, genetics and evolution. 2014. Vol. 21. P. 563–574.

40. Kim C., Mwangi M., Chung M., Milheirço C., de Lencastre H., Tomasz A. The mechanism of heterogeneous beta-lactam resistance in MRSA: key role of the stringent stress response //PLoS One. 2013. Vol. 8, no. 12. P. e82814.

41. Saravolatz L. D., Stein G. E., Johnson L. B. Ceftaroline: a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus // Clinical infectious diseases. 2011. Vol. 52, no. 9. P. 1156–1163.

42. Long S. W., Olsen R. J., Mehta S. C., Palzkill T., Cernoch P. L., Perez K. K., Musick W. L., Rosato A. E., Musser J. M. PBP2a mutations causing high-level ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates // Antimicrobial agents and chemotherapy. 2014. Vol. 58, no. 11. P. 6668–6674.

43. Lahiri S. D., Alm R. A. Potential of Staphylococcus aureus isolates carrying different PBP2a alleles to develop resistance to ceftaroline // Journal of Antimicrobial Chemotherapy. 2016. Vol. 71, no. 1. P. 34–40.

44. Schaumburg F., Peters G., Alabi A., Becker K., Idelevich E. A. Missense mutations of PBP2a are associated with reduced susceptibility to ceftaroline and ceftobiprole in African MRSA // Journal of Antimicrobial Chemotherapy. 2016. Vol. 71, no. 1. P. 41–44.

45. Zeng D., Debabov D., Hartsell T. L., Cano R. J., Adams S., Schuyler J. A., McMillan R., Pace J. L. Approved glycopeptide antibacterial drugs: mechanism of action and resistance // Cold Spring Harbor perspectives in medicine. 2016. Vol. 6, no. 12. P. a026989.

46. Courvalin P. Vancomycin resistance in gram-positive cocci // Clinical infectious diseases. 2006. Vol. 42, no. Supplement_1. P. S25–S34.

47. Gardete S., Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus // The Journal of clinical investigation. 2014. Vol. 124, no. 7. P. 2836–2840.

48. Arbeit R. D., Maki D., Tally F. P., Campanaro E., Eisenstein B. I., Daptomycin 98-01 and 99-01 Investigators. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections // Clinical Infectious Diseases. 2004. Vol. 38, no. 12. P. 1673–1681.

49. Bayer A. S., Schneider T., Sahl H. G. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall // Annals of the New York Academy of Sciences. 2013. Vol. 1277, no. 1. P. 139–158.

50. Miller W. R., Bayer A. S., Arias C. A. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and enterococci // Cold Spring Harbor perspectives in medicine. 2016. Vol. 6, no. 11. P. a026997.

51. Ernst C. M., Staubitz P., Mishra N. N., Yang S. J., Hornig G., Kalbacher H., Bayer A. S., Kraus D., Peschel A. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion // PLoS pathogens. 2009. Vol. 5, no. 11. P. e1000660.

52. Ernst C. M., Peschel A. Broad‐ spectrum antimicrobial peptide resistance by MprF‐ mediated aminoacylation and flipping of phospholipids // Molecular microbiology. 2011. Vol. 80, no. 2. P. 290–299.

53. Wilson D. N. The A–Z of bacterial translation inhibitors // Critical reviews in biochemistry and molecular biology. 2009. Vol. 44, no. 6. P. 393–433.

54. Wilson D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance //Nature Reviews Microbiology. 2014. Vol. 12, no. 1. P. 35–48.

55. Arenz S., Wilson D. N. Bacterial protein synthesis as a target for antibiotic inhibition // Cold spring harbor perspectives in medicine. 2016. Vol. 6, no. 9. P. a025361.

56. Thomas C. M., Hothersall J., Willis C. L., Simpson T. J. Resistance to and synthesis of the antibiotic mupirocin // Nature Reviews Microbiology. 2010. Vol. 8, no. 4. P. 281–289.

57. Nguyen F., Starosta A. L., Arenz S., Sohmen D., Dönhöfer A., Wilson D. N. Tetracycline antibiotics and resistance mechanisms // Biological chemistry. 2014. Vol. 395, no. 5. P. 559–575.

58. Piddock L. J. V. Multidrug-resistance efflux pumps? not just for resistance //Nature Reviews Microbiology. 2006. Vol. 4, no. 8. P. 629–636.

59. Chopra I., Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance // Microbiology and molecular biology reviews. 2001. Vol. 65, no. 2. P. 232–260.

60. Testa R. T., Petersen P. J., Jacobus N. V., Sum P. E., Lee V. J., Tally F. P. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines // Antimicrobial agents and chemotherapy. 1993. Vol. 37, no. 11. P. 2270–2277.

61. McAleese F., Petersen P., Ruzin A., Dunman P. M., Murphy E., Projan S. J., Bradford P. A. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline // Antimicrobial agents and chemotherapy. 2005. Vol. 49, no. 5. P. 1865–1871.

62. Beabout K., Hammerstrom T. G., Perez A. M., Magalhães B. F., Prater A. G., Clements T. P., Arias C. C., Saxer G., Shamoo Y. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility //Antimicrobial agents and chemotherapy. 2015. Vol. 59, no. 9. P. 5561–5566.

63. Cox G., Ejim L., Stogios P. J., Koteva K., Bordeleau E., Evdokimova E., Sieron A. O., Savchenko A., Serio A. W., Krause K. M., Wright G. D. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes // ACS infectious diseases. 2018. Vol. 4, no. 6. P. 980–987.

64. Ramirez M. S., Tolmasky M. E. Aminoglycoside modifying enzymes // Drug resistance updates. 2010. Vol. 13, no. 6. P. 151–171.

65. Long K. S., Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome // Antimicrobial agents and chemotherapy. 2012. Vol. 56, no. 2. P. 603–612.

66. Locke J. B., Zurenko G. E., Shaw K. J., Bartizal K. Tedizolid for the management of human infections: in vitro characteristics // Clinical infectious diseases. 2014. Vol. 58, no. suppl_1. P. S35–S42.

67. Crotty M. P., Krekel T., Burnham C. A. D., Ritchie D. J. New gram-positive agents: the next generation of oxazolidinones and lipoglycopeptides //Journal of clinical microbiology. 2016. Vol. 54, no. 9. P. 2225–2232.

68. Schwarz S., Shen J., Kadlec K., Wang Y., Michael G. B., Feßler A. T., Vester B. Lincosamides, streptogramins, phenicols, and pleuromutilins: mode of action and mechanisms of resistance // Cold Spring Harbor perspectives in medicine. 2016. Vol. 6, no. 11. P. a027037.

69. Allington D. R., Rivey M. P. Quinupristin/dalfopristin: a therapeutic review // Clinical therapeutics. 2001. Vol. 23, no. 1. P. 24–44.

70. Shore A. C., Lazaris A., Kinnevey P. M., Brennan O. M., Brennan G. I., O'Connell B., Feßler A. T., Schwarz S., Coleman D. C. First report of cfr-carrying plasmids in the pandemic sequence type 22 methicillin-resistant Staphylococcus aureus staphylococcal cassette chromosome mec type IV clone // Antimicrobial Agents and Chemotherapy. 2016. Vol. 60, no. 5. P. 3007–3015.

71. Kehrenberg C., Schwarz S., Jacobsen L., Hansen L. H., Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503 // Molecular microbiology. 2005. Vol. 57, no. 4. P. 1064–1073.

72. Kehrenberg C., Meunier D., Targant H., Cloeckaert A., Schwarz S., Madec J. Y. Plasmid-mediated florfenicol resistance in Pasteurella trehalosi // Journal of Antimicrobial Chemotherapy. 2006. Vol. 58, no. 1. P. 13–17.

73. Foster T. J. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria // Microbiological reviews. 1983. Vol. 47, no. 3. P. 361–409.

74. Allignet J., El Solh N. Comparative analysis of staphylococcal plasmids carrying three streptograminresistance genes: vat–vgb–vga // Plasmid. 1999. Vol. 42, no. 2. P. 134–138.

75. Haroche J., Morvan A., Davi M., Allignet J., Bimet F., El Solh N. Clonal diversity among streptogramin Aresistant Staphylococcus aureus isolates collected in French hospitals // Journal of clinical microbiology. 2003. Vol. 41, no. 2. P. 586–591.

76. Weisblum B. Erythromycin resistance by ribosome modification // Antimicrobial agents and chemotherapy. 1995. Vol. 39, no. 3. P. 577–585.

77. Roberts M. C., Sutcliffe J., Courvalin P., Jensen L. B., Rood J., Seppala H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants // Antimicrobial agents and chemotherapy. 1999. Vol. 43, no. 12. P. 2823–2830.

78. Sharkey L. K. R., Edwards T. A., O’Neill A. J. ABC-F proteins mediate antibiotic resistance through ribosomal protection // MBio. 2016. Vol. 7, no. 2. P. 10.1128/mbio.01975-15.

79. Wilson D. N. The ABC of ribosome-related antibiotic resistance // MBio. 2016. Vol. 7, no. 3. P. 10.1128/mbio.00598-16.

80. Andriole V. T. The quinolones: past, present, and future // Clinical infectious diseases. 2005. Vol. 41, no. Supplement_2. P. S113–S119.

81. Wang J. C. Annull Reviews // Biochemistry. 1996. Vol. 65. P. 635.

82. Hooper D. C. Fluoroquinolone resistance among Gram-positive cocci // The Lancet infectious diseases. 2002. Vol. 2, no. 9. P. 530–538.

83. Hooper D. C., Jacoby G. A. Mechanisms of drug resistance: quinolone resistance // Annals of the New York academy of sciences. 2015. Vol. 1354, no. 1. P. 12–31.

84. Andersson D. I., Hughes D. Microbiological effects of sublethal levels of antibiotics // Nature Reviews Microbiology. 2014. Vol. 12, no. 7. P. 465–478.

85. Nagel M., Reuter T., Jansen A., Szekat C., Bierbaum G. Influence of ciprofloxacin and vancomycin on mutation rate and transposition of IS256 in Staphylococcus aureus // International Journal of Medical Microbiology. 2011. Vol. 301, no. 3. P. 229–236.

86. Yu J. L., Grinius L., Hooper D. C. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes // Journal of bacteriology. 2002. Vol. 184, no. 5. P. 1370–1377.

87. Truong-Bolduc Q. C., Dunman P. M., Strahilevitz J., Projan S. J., Hooper D. C. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus // Journal of Bacteriology. 2005. Vol. 187, no. 7. P. 2395–2405.

88. Truong-Bolduc Q. C., Strahilevitz J., Hooper D. C. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus // Antimicrobial agents and chemotherapy. 2006. Vol. 50, no. 3. P. 1104–1107.

89. Lesch J. E. The first miracle drugs: how the sulfa drugs transformed medicine. Oxford University Press, 2007.

90. Wormser G. P., Keusch G. T., Heel R. C. Co-trimoxazole (Trimethoprim-sulfamethoxazole) an updated review of its antibacterial activity and clinical efficacy // Drugs. 1982. Vol. 24. P. 459–518.

91. Hampele I. C., D’Arcy A., Dale G. E., Kostrewa D., Nielsen J., Oefner C., Page M. G., Schönfeld H. J., Stüber D., Then R. L. Structure and function of the dihydropteroate synthase from Staphylococcus aureus // Journal of Molecular Biology. 1997. Vol. 268, no. 1. P. 21–30.

92. Hitchings G. H., Burchall J. J. Inhibition of folate biosynthesis and function as a basis for chemotherapy // Advances in Enzymology and Related Areas of Molecular Biology. 1965. Vol. 27. P. 417–468.

93. Goldberg E., Bishara J. Contemporary unconventional clinical use of co-trimoxazole // Clinical Microbiology and Infection. 2012. Vol. 18, no. 1. P. 8–17.

94. Dale G. E., Broger C., D'Arcy A., Hartman P. G., DeHoogt R., Jolidon S., Kompis I., Labhardt A. M., Langen H., Locher H., Page M. G., Stüber D., Then R. L., Wipf B., Oefner C. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance // Journal of Molecular Biology. 1997. Vol. 266, no. 1. P. 23–30.

95. Rouch D. A., Messerotti L. J., Loo L. S. L., Jackson C. A., Skurray R. A. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257 // Molecular microbiology. 1989. Vol. 3, no. 2. P. 161–175.

96. Kadlec K., Schwarz S. Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet (L) // Antimicrobial Agents and Chemotherapy. 2009. Vol. 53, no. 2. P. 776–778.

97. Sekiguchi J., Tharavichitkul P., Miyoshi-Akiyama T., Chupia V., Fujino T., Araake M., Irie A., Morita K., Kuratsuji T., Kirikae T. Cloning and characterization of a novel trimethoprim-resistant dihydrofolate reductase from a nosocomial isolate of Staphylococcus aureus CM. S2 (IMCJ1454) // Antimicrobial agents and chemotherapy. 2005. Vol. 49, no. 9. P. 3948–3951.

98. den Heijer C. D. J., van Bijnen E. M. E., Paget W. J., Pringle M., Goossens H., Bruggeman C. A., Schellevis F. G., Stobberingh E. E., APRES Study Team. Prevalence and resistance of commensal Staphylococcus aureus, including meticillin-resistant S aureus, in nine European countries: a cross-sectional study // The Lancet infectious diseases. 2013. Vol. 13, no. 5. P. 409–415.

99. Nurjadi D., Olalekan A. O., Layer F., Shittu A. O., Alabi A., Ghebremedhin B., Schaumburg F., HofmannEifler J., van Genderen P. J. J., Caumes E., Fleck R., Mockenhaupt F. P., Herrmann M., Kern W. V., Abdulla S., Grobusch M. P., Kremsner P. G., Wolz C., Zanger P. Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe // Journal of Antimicrobial Chemotherapy. 2014. Vol. 69, no. 9. P. 2361–2368.

100. Nurjadi D., Schäfer J., Friedrich-Jänicke B., Mueller A., Neumayr A., Calvo-Cano A., Goorhuis A., Molhoek N., Lagler H., Kantele A., van Genderen P. J. J., Gascon J., Grobusch M. P., Caumes E., Hatz C., Fleck R., Mockenhaupt F. P., Zanger P. Predominance of dfrG as determinant of trimethoprim resistance in imported Staphylococcus aureus // Clinical Microbiology and Infection. 2015. Vol. 21, no. 12. P. 1095.e5–1095.e9.

101. Решедько Г. К., Авдеева Т. Г., Иванчик Н. В., Стунжас О. С. Антибиотикорезистентность штаммов S. aureus, выделенных у детей раннего возраста с инфекциями кожи и мягких тканей // Клиническая микробиология и антимикробная химиотерапия. 2009. T. 11, № 4. P. 356–361.

102. Oefner C., Bandera M., Haldimann A., Laue H., Schulz H., Mukhija S., Parisi S., Weiss L., Lociuro S., Dale G. E. Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity // Journal of Antimicrobial Chemotherapy. 2009. Vol. 63, no. 4. P. 687–698.

103. Krievins D., Brandt R., Hawser S., Hadvary P., Islam K. Multicenter, randomized study of the efficacy and safety of intravenous iclaprim in complicated skin and skin structure infections // Antimicrobial Agents and Chemotherapy. 2009. Vol. 53, no. 7. P. 2834–2840.

104. Campbell E. A., Korzheva N., Mustaev A., Murakami K., Nair S., Goldfarb A., Darst S. A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase // Cell. 2001. Vol. 104, no. 6. P. 901–912.

105. Aubry-Damon H., Soussy C. J., Courvalin P. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus // Antimicrobial Agents and Chemotherapy. 1998. Vol. 42, no. 10. P. 2590–2594.

106. Wichelhaus T. A., Schäfer V., Brade V., Böddinghaus B. Molecular characterization of rpoB mutations conferring cross-resistance to rifamycins on methicillin-resistant Staphylococcus aureus // Antimicrobial agents and chemotherapy. 1999. Vol. 43, no. 11. P. 2813–2816.

107. Russell C. D., Lawson McLean A., Saunders C., Laurenson I. F. Adjunctive rifampicin may improve outcomes in Staphylococcus aureus bacteraemia: a systematic review // Journal of Medical Microbiology. 2014. Vol. 63, no. 6. P. 841–848.

108. Parsons J. B., Rock C. O. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? // Current Opinion in Microbiology. 2011. Vol. 14, no. 5. P. 544–549.

109. Yao J., Rock C. O. Resistance mechanisms and the future of bacterial enoyl-acyl carrier protein reductase (FabI) antibiotics // Cold Spring Harbor Perspectives in Medicine. 2016. Vol. 6, no. 3. P. a027045.

110. Payne D. J., Miller W. H., Berry V., Brosky J., Burgess W. J., Chen E., DeWolf Jr. W. E., Fosberry A. P., Greenwood R., Head M. S., Heerding D. A., Janson C. A., Jaworski D. D., Keller P. M., Manley P. J., Moore T. D., Newlander K. A., Pearson S., Polizzi B. J., Qiu X., Rittenhouse S. F., Slater-Radosti C., Salyers K. L., Seefeld M. A., Smyth M. G., Takata D. T., Uzinskas I. N., Vaidya K., Wallis N. G., Winram S. B., Yuan C. K. Y., Huffman W. F. Discovery of a novel and potent class of FabI-directed antibacterial agents // Antimicrobial Agents and Chemotherapy. 2002. Vol. 46, no. 10. P. 3118–3124.

111. Kaplan N., Albert M., Awrey D., Bardouniotis E., Berman J., Clarke T., Dorsey M., Hafkin B., Ramnauth J., Romanov V., Schmid M. B., Thalakada R., Yethon J., Pauls H. W. Mode of action, in vitro activity, and in vivo efficacy of AFN-1252, a selective antistaphylococcal FabI inhibitor // Antimicrobial Agents and Chemotherapy. 2012. Vol. 56, no. 11. P. 5865–5874.

112. Flamm R. K., Rhomberg P. R., Kaplan N., Jones R. N., Farrell D. J. Activity of Debio1452, a FabI inhibitor with potent activity against Staphylococcus aureus and coagulase-negative Staphylococcus spp., including multidrugresistant strains // Antimicrobial agents and chemotherapy. 2015. Vol. 59, no. 5. P. 2583–2587.

113. Latimer J., Forbes S., McBain A. J. Attenuated virulence and biofilm formation in Staphylococcus aureus following sublethal exposure to triclosan //Antimicrobial agents and chemotherapy. 2012. Vol. 56, no. 6. P. 3092–3100.

114. Heath R. J., Rubin J. R., Holland D. R., Zhang E., Snow M. E., Rock C. O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis // Journal of Biological Chemistry. 1999. Vol. 274, no. 16. P. 11110–11114.

115. Furi L., Haigh R., Al Jabri Z. J., Morrissey I., Ou H. Y., León-Sampedro R., Martinez J. L., Coque T. M., Oggioni M. R. Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes // Frontiers in Microbiology. 2016. Vol. 7. P. 1008.

116. Park H. S., Yoon Y. M., Jung S. J., Kim C. M., Kim J. M., Kwak J. H. Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor // Journal of Antimicrobial Chemotherapy. 2007. Vol. 60, no. 3. P. 568–574.

117. Escaich S., Prouvensier L., Saccomani M., Durant L., Oxoby M., Gerusz V., Moreau F., Vongsouthi V., Maher K., Morrissey I., Soulama-Mouze C. The MUT056399 inhibitor of FabI is a new antistaphylococcal compound // Antimicrobial Agents and Chemotherapy. 2011. Vol. 55, no. 10. P. 4692–4697.

118. Adams D. W., Errington J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring // Nature Reviews Microbiology. 2009. Vol. 7, no. 9. P. 642–653.

119. Pinho M. G., Kjos M., Veening J. W. How to get (a) round: mechanisms controlling growth and division of coccoid bacteria // Nature reviews microbiology. 2013. Vol. 11, no. 9. P. 601–614.

120. Haydon D. J., Stokes N. R., Ure R., Galbraith G., Bennett J. M., Brown D. R., Baker P. J., Barynin V. V., Rice D. W., Sedelnikova S. E., Heal J. R., Sheridan J. M., Aiwale S. T., Chauhan P. K., Srivastava A., Taneja A., Collins I., Errington J., Czaplewski L. G. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity // Science. 2008. Vol. 321, no. 5896. P. 1673–1675.

121. Andreu J. M., Schaffner-Barbero, C., Huecas S., Alonso D., Lopez-Rodriguez M. L., Ruiz-Avila L. B., Núñez-Ramírez R., Llorca O., Martín-Galiano A. J. The antibacterial cell division inhibitor PC190723 is an FtsZ polymer-stabilizing agent that induces filament assembly and condensation // Journal of Biological Chemistry. 2010. Vol. 285, no. 19. P. 14239–14246.

122. Tan C. M., Therien A. G., Lu J., Lee S. H., Caron A., Gill C. J., Lebeau-Jacob C., Benton-Perdomo L., Monteiro J. M., Pereira P. M., Elsen N. L., Wu J., Deschamps K., Petcu M., Wong S., Daigneault E., Kramer S., Liang L., Maxwell E., Claveau D., Vaillancourt J., Skorey K., Tam J., Wang H., Meredith T. C., Sillaots S., Wang-Jarantow L., Ramtohul Y., Langlois E., Landry F., Reid J. C., Parthasarathy G., Sharma S., Baryshnikova A., Lumb K. J., Pinho M. G., Soisson S. M., Roemer T. Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics // Science translational medicine. 2012. Vol. 4, no. 126. P. 126ra35–126ra35.

123. Ling L. L., Schneider T., Peoples A. J., Spoering A. L., Engels I., Conlon B. P., Mueller A., Schäberle T. F., Hughes D. E., Epstein S., Jones M., Lazarides L., Steadman V. A., Cohen D. R., Felix C. R., Fetterman K. A., Millett W. P., Nitti A. G., Zullo A. M., Chen C. Lewis K. A new antibiotic kills pathogen without detectable resistance // Nature. 2015. Vol. 517, no. 7535. P. 455–459.

124. Homma T., Nuxoll A., Gandt A. B., Ebner P., Engels I., Schneider T., Götz F., Lewis K., Conlon B. P. Dual targeting of cell wall precursors by teixobactin leads to cell lysis // Antimicrobial Agents and Chemotherapy. 2016. Vol. 60, no. 11. P. 6510–6517.

125. Nesme J., Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria // Environmental Microbiology. 2015. Vol. 17, no. 4. P. 913–930.

126. Pasquina L. W., Santa Maria J. P., Walker S. Teichoic acid biosynthesis as an antibiotic target // Current Opinion in Microbiology. 2013. Vol. 16, no. 5. P. 531–537.

127. Sewell E. W. C., Brown E. D. Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics // The Journal of Antibiotics. 2014. Vol. 67, no. 1. P. 43–51.

128. Swoboda J. G., Meredith T. C., Campbell J., Brown S., Suzuki T., Bollenbach T., Malhowski A. J., Kishony R., Gilmore M. S., Walker S. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus // ACS Chemical Biology. 2009. Vol. 4, no. 10. P. 875–883.

129. Wang H., Gill C. J., Lee S. H., Mann P., Zuck P., Meredith T. C., Murgolo N., She X., Kales S., Liang L., Liu J., Wu J., Maria J. S., Su J., Pan J., Hailey J., Mcguinness D., Tan C. M., Flattery A., Walker S., Black T., Roemer T. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents // Chemistry & biology. 2013. Vol. 20, no. 2. P. 272–284.

130. Richter S. G., Elli D., Kim H. K., Hendrickx A. P., Sorg J. A., Schneewind O., Missiakas D. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria // Proceedings of the National Academy of Sciences. 2013. Vol. 110, no. 9. P. 3531–3536.


Рецензия

Для цитирования:


Степаненко И.С., Косов В.А., Михайлова Л.В., Тимофеева А.С. Анализ резистентности Staphylococcus aureus в антибиотическую эпоху (литературный обзор). Астраханский медицинский журнал. 2025;20(2):27-50. https://doi.org/10.17021/1992-6499-2025-2-27-50

For citation:


Stepanenko I.S., Kosov V.A., Mikhailova L.V., Timofeeva A.S. Timofeeva A. S. Analysis of Staphylococcus aureus aureus resistance in the antibiotic era (literature review). Astrakhan medical journal. 2025;20(2):27-50. (In Russ.) https://doi.org/10.17021/1992-6499-2025-2-27-50

Просмотров: 7


ISSN 1992-6499 (Print)