Neural network technologies in prediction the effectiveness of treatment of patients with pulmonary tuberculosis
https://doi.org/10.17021/1992-6499-2023-4-11-18
Abstract
The study used predicting the effectiveness of treatment of patients with pulmonary tuberculosis using neural network technologies. The most optimal neural network model was obtained, which allows predicting the effectiveness of treatment with a forecast accuracy of at least 78.4%. As a result of constructing a neural network model, the most significant «input» parameters of the neural network were identified: the presence of hepatotoxic reactions, the level of IL-1ß, IL-6, IL-4, IL-10, IFN-γ, C-reactive protein before the start of the intensive phase of chemotherapy, the presence of antibiotic resistance, the presence of mycobacterium tuberculosis before the appointment of a specific chemotherapy by seeding, the volume of lung tissue damage, the chemotherapy regimen, the clinical form of pulmonary tuberculosis, as well as the genotype of ЕЕ gene GSTT1.
About the Authors
M. A. AlymenkoRussian Federation
Maksim A. Alymenko - Cand. Sci. (Med.), Assistant of Department, Kazan SMA – branch of the RMA for Post-Graduate Education, Associate Professor the Department of General Biology and Pharmacy, Faculty of Medicine, MF IU “Synergy"
Kazan, Moscow
R. Sh. Valiev
Russian Federation
Ravil Sh. Valiev - Dr. Sci. (Med.), Professor, Head of Department.
Kazan
N. R. Valiev
Russian Federation
Nail R. Valiev - Cand. Sci. (Med.), Associate Professor of Department.
Kazan
V. M. Kolomiets
Russian Federation
Vladislav M. Kolomiets - Dr. Sci. (Med.), Professor, Professor of Department.
Kursk
S. N. Volkova
Russian Federation
Svetlana N. Volkova - Dr. Sci. (Tech.), Professor, Head of Department.
Kursk
А. V. Polonikov
Russian Federation
Aleksey V. Polonikov - Dr. Sci. (Med.), Professor, Director of Research Institute of Genetic and Molecular Epidemiology.
Kursk
G. S. Mal
Russian Federation
Galina S. Mal - Dr. Sci. (Med.), Professor, Head of Department.
Kursk
I. N. Tragira
Russian Federation
Irina N. Tragira - Chief infectiologist of Central Federal District, Head of the Center of the General Infektologiya.
Moscow
V. A. Ragulina
Russian Federation
Vera A. Ragulina - Cand. Sci. (Med.), Associate Professor, Associate Professor of Department.
Kursk
E. V. Popova
Russian Federation
Elizaveta V. Popova - Pediatrician.
Voronezh
E. P. Pavlenko
Russian Federation
Elizaveta P. Pavlenko - Assistant of Department.
Kursk
N. P. Balobanova
Russian Federation
Natalia Р. Balobanova - Cand. Sci. (Biol.), Associate Professor, Head of the Department of General Biology and Pharmacy, Faculty of Medicine.
Moscow
А. V. Batishchev
Russian Federation
Aleksandr V. Batishchev - Cand. Sci. (Econ.), Associate Professor.
Moscow
References
1. Vasil'eva I. A., Samoylova A. G., Zimina V. N., Lovacheva O. V., Abrachenko A. V. Tuberculosis chemotherapy in Russia – the story continues. Tuberkulez i bolezni legkikh = Tuberculosis and lung diseases. 2023; 101 (2): 8–12. (In Russ.).
2. Aggarwal C. C. Neural networks and deep learning: a textbook. Springer; 2018. 497 p. doi 10.1007/978-3319-94463-0 ISBN 978-3-319-94462-3.
3. Volchek Yu. A., Shishko O. N., Spiridonova O. S., Mokhort T. V. The position of the artificial neural network model in medical expert systems. Juvenis Scientia. Juvenis Scientia. 2017; (9): 4–9. doi: 10.15643/jscientia.2017.9.001. (In Russ.).
4. Kravchenko V. O. Methods of using artificial neural networks in medicine. Ustoychivoe razvitie nauki i obrazovaniya = Sustainable development of science and education 2018; (6): 266–270. (In Russ.).
5. Mustafaev A. G. The use of neural network technologies in the tasks of medical diagnostics. Vestnik komp'yuternykh i informatsionnykh tekhnologiy = Bulletin of Computer and Information Technologies. 2019; (6 (180)): 32–38. doi: 10.14489/vkit.2019.06.pp.032-038 (In Russ.).
6. Khaykin S. Neural networks: a complete course. Moscow: Williams; 2016. 1104 р. (In Russ.).
7. Kriegeskorte N., Golan T. Neural network models and deep learning. Curr Biol. 2019; 29 (7): R231–236. doi: 10.1016/j.cub.2019.02.034.
8. Pérez J., Cabrera J. A., Castillo J. J., Velasco J. M. Bio-inspired spiking neural network for nonlinear systems control. Neural Netw. 2018; 104: 15–25. doi: 10.1016/j.neunet.2018.04.002.
9. Goryunova V. V., Goryunova T. I., Kukhtevich I. I. Analysis of the use of neural network technologies in solving diagnostic and prognostic problems in medicine. Mezhdunarodnyy studencheskiy nauchnyy vestnik = International Student Scientific Bulletin. 2017; (4-8): 1214–1216. (In Russ.).
10. Nasledov A. D. SPSS 19: Professional Statistical Data Analysis. Moscow: Piter; 2011. 540 p. (In Russ.).
Review
For citations:
Alymenko M.A., Valiev R.Sh., Valiev N.R., Kolomiets V.M., Volkova S.N., Polonikov А.V., Mal G.S., Tragira I.N., Ragulina V.A., Popova E.V., Pavlenko E.P., Balobanova N.P., Batishchev А.V. Neural network technologies in prediction the effectiveness of treatment of patients with pulmonary tuberculosis. Astrakhan medical journal. 2023;18(4):11-18. (In Russ.) https://doi.org/10.17021/1992-6499-2023-4-11-18