Preview

Astrakhan medical journal

Advanced search

Neural network technologies in prediction the effectiveness of treatment of patients with pulmonary tuberculosis

https://doi.org/10.17021/1992-6499-2023-4-11-18

Abstract

The study used predicting the effectiveness of treatment of patients with pulmonary tuberculosis using neural network technologies. The most optimal neural network model was obtained, which allows predicting the effectiveness of treatment with a forecast accuracy of at least 78.4%. As a result of constructing a neural network model, the most significant «input» parameters of the neural network were identified: the presence of hepatotoxic reactions, the level of IL-1ß, IL-6, IL-4, IL-10, IFN-γ, C-reactive protein before the start of the intensive phase of chemotherapy, the presence of antibiotic resistance, the presence of mycobacterium tuberculosis before the appointment of a specific chemotherapy by seeding, the volume of lung tissue damage, the chemotherapy regimen, the clinical form of pulmonary tuberculosis, as well as the genotype of ЕЕ gene GSTT1.

About the Authors

M. A. Alymenko
Kazan State Medical Academy - branch of the Russian Ministry of Health; Moscow Financial and Industrial University «Synergy»
Russian Federation

Maksim A. Alymenko - Cand. Sci. (Med.), Assistant of Department, Kazan SMA – branch of the RMA for Post-Graduate Education, Associate Professor the Department of General Biology and Pharmacy, Faculty of Medicine, MF IU “Synergy"

Kazan, Moscow



R. Sh. Valiev
Kazan State Medical Academy - branch of the Russian Ministry of Health
Russian Federation

Ravil Sh. Valiev - Dr. Sci. (Med.), Professor, Head of Department.

Kazan



N. R. Valiev
Kazan State Medical Academy - branch of the Russian Ministry of Health
Russian Federation

Nail R. Valiev - Cand. Sci. (Med.), Associate Professor of Department.

Kazan



V. M. Kolomiets
Kursk State Medical University of the Ministry of Health of Russia
Russian Federation

Vladislav M. Kolomiets - Dr. Sci. (Med.), Professor, Professor of Department.

Kursk



S. N. Volkova
Kursk State Agricultural University named after Ivanova
Russian Federation

Svetlana N. Volkova - Dr. Sci. (Tech.), Professor, Head of Department.

Kursk



А. V. Polonikov
Kursk State Medical University of the Ministry of Health of Russia
Russian Federation

Aleksey V. Polonikov - Dr. Sci. (Med.), Professor, Director of Research Institute of Genetic and Molecular Epidemiology.

Kursk



G. S. Mal
Kursk State Medical University of the Ministry of Health of Russia
Russian Federation

Galina S. Mal - Dr. Sci. (Med.), Professor, Head of Department.

Kursk



I. N. Tragira
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Irina N. Tragira - Chief infectiologist of Central Federal District, Head of the Center of the General  Infektologiya.

Moscow



V. A. Ragulina
Kursk State Medical University of the Ministry of Health of Russia
Russian Federation

Vera A. Ragulina - Cand. Sci. (Med.), Associate Professor, Associate Professor of Department.

Kursk



E. V. Popova
Voronezh Regional Children's Clinical Hospital № 2
Russian Federation

Elizaveta V. Popova - Pediatrician.

Voronezh



E. P. Pavlenko
Kursk State Medical University of the Ministry of Health of Russia
Russian Federation

Elizaveta P. Pavlenko - Assistant of Department.

Kursk



N. P. Balobanova
Moscow Financial and Industrial University «Synergy»
Russian Federation

Natalia Р. Balobanova - Cand. Sci. (Biol.), Associate Professor, Head of the Department of General Biology and Pharmacy, Faculty of Medicine.

Moscow



А. V. Batishchev
Moscow Financial and Industrial University «Synergy»
Russian Federation

Aleksandr V. Batishchev - Cand. Sci. (Econ.), Associate Professor.

Moscow



References

1. Vasil'eva I. A., Samoylova A. G., Zimina V. N., Lovacheva O. V., Abrachenko A. V. Tuberculosis chemotherapy in Russia – the story continues. Tuberkulez i bolezni legkikh = Tuberculosis and lung diseases. 2023; 101 (2): 8–12. (In Russ.).

2. Aggarwal C. C. Neural networks and deep learning: a textbook. Springer; 2018. 497 p. doi 10.1007/978-3319-94463-0 ISBN 978-3-319-94462-3.

3. Volchek Yu. A., Shishko O. N., Spiridonova O. S., Mokhort T. V. The position of the artificial neural network model in medical expert systems. Juvenis Scientia. Juvenis Scientia. 2017; (9): 4–9. doi: 10.15643/jscientia.2017.9.001. (In Russ.).

4. Kravchenko V. O. Methods of using artificial neural networks in medicine. Ustoychivoe razvitie nauki i obrazovaniya = Sustainable development of science and education 2018; (6): 266–270. (In Russ.).

5. Mustafaev A. G. The use of neural network technologies in the tasks of medical diagnostics. Vestnik komp'yuternykh i informatsionnykh tekhnologiy = Bulletin of Computer and Information Technologies. 2019; (6 (180)): 32–38. doi: 10.14489/vkit.2019.06.pp.032-038 (In Russ.).

6. Khaykin S. Neural networks: a complete course. Moscow: Williams; 2016. 1104 р. (In Russ.).

7. Kriegeskorte N., Golan T. Neural network models and deep learning. Curr Biol. 2019; 29 (7): R231–236. doi: 10.1016/j.cub.2019.02.034.

8. Pérez J., Cabrera J. A., Castillo J. J., Velasco J. M. Bio-inspired spiking neural network for nonlinear systems control. Neural Netw. 2018; 104: 15–25. doi: 10.1016/j.neunet.2018.04.002.

9. Goryunova V. V., Goryunova T. I., Kukhtevich I. I. Analysis of the use of neural network technologies in solving diagnostic and prognostic problems in medicine. Mezhdunarodnyy studencheskiy nauchnyy vestnik = International Student Scientific Bulletin. 2017; (4-8): 1214–1216. (In Russ.).

10. Nasledov A. D. SPSS 19: Professional Statistical Data Analysis. Moscow: Piter; 2011. 540 p. (In Russ.).


Review

For citations:


Alymenko M.A., Valiev R.Sh., Valiev N.R., Kolomiets V.M., Volkova S.N., Polonikov А.V., Mal G.S., Tragira I.N., Ragulina V.A., Popova E.V., Pavlenko E.P., Balobanova N.P., Batishchev А.V. Neural network technologies in prediction the effectiveness of treatment of patients with pulmonary tuberculosis. Astrakhan medical journal. 2023;18(4):11-18. (In Russ.) https://doi.org/10.17021/1992-6499-2023-4-11-18

Views: 339


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-6499 (Print)