Influence of intestinal dysbiosis on the course of authistic spectrum: literature review
https://doi.org/10.17021/1992-6499-2024-4-16-30
Abstract
The article presents a review of studies elucidating the mechanisms by which the gut microbiota, its metabolites, and the brain interact to influence the pathogenesis and clinical presentation of autism spectrum disorders. A deeper understanding of gut-brain axis interactions could provide the basis for new therapies aimed at alleviating symptoms in children with autism spectrum disorders.
About the Authors
E. O. GrigoryantsRussian Federation
Elina O. Grigoryants, Assistant of the Department microbiology, virology with course of immunology
Tver
Yu. V. Chervinets
Russian Federation
Yulia V. Chervinets, Sci. (Med.), Professor, Head of the Department microbiology, virology with course of immunology
Tver
V. M. Chervinets
Russian Federation
Vyacheslav M. Chervinets, Dr. Sci. (Med.), Professor, Professor of the Department microbiology, virology with course of immunology
Tver
E. S. Rumyantseva
Russian Federation
Elizaveta S. Rumyantseva, Resident of the Department polyclinic pediatrics and neonatology
Tver
References
1. Maenner M. J., Shaw K. A., Bakian A. V., Bilder D. A., Durkin M. S., Esler A., Fumier S. M., Hallas L., Hall-Lande J., Hudson A., Hughes M. M., Patrick M., Pierce K., Poynter J. N., Salinas A., Shenouda J., Vehom A., Warren Z., Constantino, J. N., DiRienzo, M., Robert T., Fitzgerald R.T., Grzybowski A., Spivey M. H., Pettygrove S., Zahorodny W., Ali A., Andrews J. G., Baroud T., Gutierrez J., Hewitt A., Lee L.-C., Lopez M., Mancilla K. C., McArthm D., Schwenk Y. D., Washington A., Williams S., Cogswell, M. E. Prevalence and Characteristics of Autism Spectmm Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. Morbidity and Mortality Weekly Report: Surveillance Summaries. 2021; 70 (11): 1-16. doi: 10.15585/mmwr.ss7011al.
2. Zeidan J., Fombonne E., Scorah J., Ibrahim A., Durkin M. S., Saxena S., Yusuf A., Shih A., Elsabbagh M. Global prevalence of autism: A systematic review update. Autism Researth. 2022; 15 (5): 778-790. doi: 10.1002/aur.2696.
3. Makushkin E. V., Makarov I. V., Pashkovskiy V. E. The prevalence of autism: genuine and imaginary. Zhumal nevrologii i psikhiatrii imeni С. C. Korsakova = S. S. Korsakov Journal of Neurology and Psychiatry. 2019; 119 (2): 80-86. doi: 10.17116/jnevro201911902180 (In Russ.).
4. Ustinova N. V., Namazova-Baranova L. S., Basova A. Ya., Soloshenko M. A., Vishneva E. A., Suleymanova Z. Y., Lapshin M. S. The Prevalence of Autism Spectrum Disorders in the Russian Federation: A Retrospective Study. Consortium Psychiatricum. 2022; 3 (4): 28-37. doi: 10.17816/CP211. EDN SRXVPD.
5. Haustov A. V., Shumskih M. A. Organization of education of students with autism spectrum disorders in the Russian Federation: results of the 2018 All-Russian monitoring. Autizm i narusheniya razvitiya = Autism and developmental disorders. 2019; 17 (3): 3-11. doi: 10.17759/autdd.2019170301 (In Russ.).
6. Thapar A., Rutter M. Genetic Advances in Autism. Journal of Autism and Developmental Disorders. 2021; 51 (12): 4321-4332. doi: 10.1007/sl0803-020-04685-z.
7. Wang C., Geng H., Liu W., Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine (Baltimore). 2017 May; 96 (18): e6696. doi: 10.1097/MD.0000000000006696. PMID: 28471964; PMCID: PMC5419910.
8. Arpi M. N. T., Simpson T. I. SFARI genes and where to find them; modelling Autism Spectrum Disorder specific gene expression dysregulation with RNA-seq data. Scientific Reports. 2022; 12 (1): 10158. doi: 10.1038/s41598-022-14077-1.
9. Karimi P., Kamali E., Mousavi S.M., Karahmadi M. Environmental factors influencing the risk of autism. Journal of Medical Science & Research. 2017; 22: 27. doi: 10.4103/1735-1995.200272.
10. Sahana K. S., Bhat S. S., Kakunje A. Study of prenatal, natal, and neonatal risk factors associated with autism. Indian Journal of Child Health. 2018; 5 (1): 42-45. doi: 10.32677/IJCH.2018.v05.i01.010.
11. Xu M., Xu X., Li J., Li F. Association Between Gut Microbiota and Autism Spectmm Disorder: A Systematic Review and Meta-Analysis. Frontiers in Psychiatry. 2019; 10: 473. doi: 10.3389/fpsyt.2019.00473.
12. Marler S., Ferguson B. J., Lee E. B., Peters B., Williams К. C., McDonnell E., Macklin E. A., Levitt P., MargolisK. G., BeversdorfD. Q., Veenstra-VanderWeele J. Association of Rigid-Compulsive Behavior with Func-tional Constipation in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders. 2017; 47 (6): 1673-1681. doi: 10.1007/sl0803-017-3084-6.
13. Fulceri F., Morelli M., Santocchi E., Cena H., Del Bianco T., Narzisi A., Calderoni S., Muratori F. Gastrointestinal symptoms and behavioral problems in preschoolers with Autism Spectrum Disorder. Digestive and Liver Disease. 2016; 48 (3): 248-254. doi: 10.1016/j.dld.2015.11.026.
14. Vuong H. E., Hsiao E. Y. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biological Psychiatry. 2017; 81 (5): 411—423. doi: 10.1016/j.biopsych.2016.08.024.
15. Kozhevnikov A. A., Raskina К. V., Martynova E. Yu., Tyakht A. V., Perfiliev A. V., Drapkina О. M., Sychev D. A., Fatkhutdinov I. R., Musienko S. V., Nikogosov D. A., Zhegulina I. O., Bavykina L. G., Karshieva A. V., Selezneva K. S., Alekseev D. G., Poteshkin Yu. E. Intestinal microbiota: modem concepts of the species composition, functions and diagnostic techniques. Russkiy meditsinskiy zhurnal = Russian Medical Journal. 2017; 17: 1244-1247 (In Russ.).
16. Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology. 2016; 14 (8): el002533. doi: 10.1371/joumal.pbio.l002533.
17. Nikolaeva I. V., Tsaregorodtsev A. D., Shaikhieva G. S. Formation of the intestinal microbiota if children and the factors that influence this process. Rossiyskiy vestnik perinatologii i pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2018; 63 (3): 13-18. doi: 10.21508/1027-4065-2018-63-3-13-18 (in Russ.).
18. Schroeder B. O., Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine. 2016; 22 (10): 1079-1089. doi: 101038/nm4185.
19. Rodriguez J. M., Murphy K., Stanton C., Ross R. P., Kober O. I., Juge N., Avershina E., Rudi K., Narbad A., Jenmalm M. C., Marchesi J. R., Collado M. C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease. 2015; 26: 26050. doi: 10.3402/mehd.v26.26050.
20. Popova E. N., Gordeev I. G. Modem ideas about human microbiota. Microbiota. Ed. by E. L. Nikonov and E. N. Popova. Moscow; 2019: 5-19 (in Russ.).
21. Alam R., Abdolmaleky H. M., Zhou J. R. Microbiome, inflammation, epigenetic alterations, and mental diseases. American Journal of Medical Genetics. 2017; 174 (6): 651-660. doi: 10.1002/ajmg.b.32567.
22. Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., Belzer C., Delgado Palacio S., Arboleya Montes S., Mancabelli L., Lugli G. A., Rodriguez J. M., Bode L., de Vos W., Gueimonde M., Margolles A., van Sinderen D., Ventma M. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews. 2017; 81 (4): e00036-17. doi: 10.1128/MMBR.00036-17.
23. Ihekweazu F. D., Versalovic J. Development of the Pediatric Gut Microbiome: Impact on Health and Disease. American Journal of the Medical Sciences. 2018; 356 (5): 413-423. doi: 10.1016/j.amjms.2018.08.005.
24. Hansen R., Scott К. P., Khan S., Martin J. C., Berry S. H., Stevenson M., Okpapi A., Munro M. J., Hold G. L. First-Pass Meconium Samples from Healthy Term Vaginally-Delivered Neonates: An Analysis of the Microbiota. PLoS One. 2015; 10 (7): e0133320. doi: 10.1371/joumal.pone.0133320.
25. Srikantha P., Mohajeri M. H. The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectmm Disorder. International Journal of Molecular Sciences. 2019; 20 (9): 2115. doi: 10.3390/ijms20092115.
26. MacIntyre D. A., Chandiramani M., Lee Y. S., Kindinger L., Smith A., Angelopoulos N., Lehne B., Arulkumaran S., Brown R., Teoh T. G., Holmes E., Nicoholson J. K., Marchesi J. R., Bennett P. R. The vaginal microbiome during pregnancy and the postpartum period in a European population. Scientific Reports. 2015; 5: 8988. doi: 10.1038/srep08988.
27. Ursova N. I. The significance of breastfeeding for the infant growth and development: a review. Almanakh klinicheskoy meditsiny = Almanac of Clinical Medicine. 2015; 42: 23-37. doi: 10.18786/2072-0505-2015-42-23-37 (in Russ.).
28. Antonova L. K., Samoukina A. M., Alekseeva Yu. A., Fedotova T. A., Petrova O. A., Strakhova S. S. Sovremennyy vzglyad na formirovanie mikrobioty pishchevaritelnogo trakta u detey pervogo goda zhizni = A Modern View of the Formation of the Microbiota of the Digestive Tract in Children of the First Year of Life. URL: https://scienceeducation.ru/ru/article/view?id=28289 (accessed: 31.08.2022) (in Russ.).
29. Iglesias-Vazquez L., Van Ginkel Riba G., Arija V., Canals J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients. 2020; 12 (3): 792. doi: 10.3390/nul2030792.
30. Luna R. A., Oezguen N., Balderas M., Venkatachalam A., Runge J. K., Versalovic J., Veenstra- Vander Weele J., Anderson G. M., Savidge T., Williams К. C. Distinct Microbiome-Neuroimmune Signatures Corre-late With Functional Abdominal Pain in Children With Autism Spectrum Disorder. Cellular And Molecular Gastroenterology and Hepatology. 2016; 3 (2): 218-230. doi: 10.1016/j.jcmgh.2016.11.008.
31. Wang M., Wan J., Rong H., He F., Wang H., Zhou J., Cai C., Wang Y., Xu R., Yin Z., Zhou W. Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectmm Disorder. mSystems. 2019; 4 (1): e00321-18. doi: 10.1128/mSystems.00321-18.
32. Bundgaard-Nielsen C., Knudsen J., Leutscher P. D. C., Lauritsen M. B., Nyegaard M., Hagstrom S., Sorensen S. Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic literature review. Gut Microbes. 2020; 11 (5): 1172-1187. doi: 10.1080/19490976.2020.1748258.
33. Coretti L., Paparo L., Riccio M. P., Amato F., Cuomo M., Natale A., Borrelli L., Corrado G., Comegna M., Buommino E., Castaldo G., Bravaccio C., Chiariotti L., Bemi Canani R., Lembo F. Gut Microbiota Features in Young Children With Autism Spectrum Disorders [published correction appears. Frontiers in Microbiology. 2018; 9: 3146. doi: 10.3389/fmicb.2018.03146.
34. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., Jousson O., Leoncini S., Renzi D., Calabro A., De Filippo C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017; 5 (1): 24. doi: 10.1186/s40168-017-0242-1.
35. Ding F. I., Yi X., Zhang X., Wang F. L., Liu. H., Mou W. W. Imbalance in the Gut Microbiota of Children With Autism Spectrum Disorders. Frontiers in Cellular and Infection Microbiology. 2021; 11: 572752. doi: 10.3389/fcimb.2021.572752.
36. Berding K., Donovan S. M. Diet Can Impact Microbiota Composition in Children With Autism Spectrum Disorder. Frontiers in Neuroscience. 2018; 12: 515. doi: 10.3389/fnins.2018.00515.
37. Kang D. W., Ilhan Z. E., Isem N. G., Hoyt D. W., Howsmon D. P., Shaffer M., Lozupone C. A., Hahn J., Adams J. B., Krajmalnik-Brown R. Differences in fecal microbial metabolites and microbiota of children with autism spectmm disorders. Anaerobe. 2018; 49: 121-131. doi: 10.1016/j.anaerobe.2017.12.007.
38. Blagonravova A. S., Zhiljaeva T. V., Kvashnina D. V. Narusheniya kishechnoy mikrobioty pri rasstroystvakh autisticheskogo spektra: novye gorizonty v poiske patogeneticheskikh podkhodov к terapii. Chast 1. Osobennosti kishechnoy mikrobioty pri rasstroystvakh autisticheskogo spektra = Disturbances of intestinal microbiota in autism spectmm disorders: new horizons in the search for pathogenetic approaches to therapy. Part 1. Features of intestinal microbiota in autism spectrum disorders. URL: https://cyberleninka.rU/article/n/namsheniya-kishechnoy-mikrobioty-prirasstroystvah-autisticheskogo-spektra-novye-gorizonty-v-poiske-patogeneticheskih-podhodov-k (accessed: 11.09.2022) (in Russ.).
39. Iovene M. R., Bombace F., Maresca R., Sapone A., Iardino P., Picardi A., Marotta R., Schiraldi C., Siniscalco D., Serra N., de Magistris L., Bravaccio C. Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia. 2017; 182 (3-4): 349-363. doi: 10.1007/sll046-016-0068-6.
40. Kantarcioglu A. S., Kiraz N., Aydin A. Microbiota-Gut-Brain Axis: Yeast Species Isolated from Stool Samples of Children with Suspected or Diagnosed Autism Spectrum Disorders and In Vitro Susceptibility Against Nystatin and Fluconazole. Mycopathologia. 2016; 181 (1-2): 1-7. doi: 10.1007/sll046-015-9949-3.
41. Bavykina I. A., Zvyagin A. A., Gusev K. Yu., Panina O. A. Narusheniya pishchevogo povedeniya u detey s rasstroystvami autisticheskogo spectra = Eating disorders in children with autism spectrum disorders. URL: https://joumal.lvrach.ru/jour/article/view/708/698 (дата обращения: 12.09.2022) (in Russ).
42. Zvyagin A. A., Bavykina I. A., Bavykin D. V. Gastroenterological symptoms in children with autism spectmm disorders. Voprosy detskoy dietologii = Issues of children's dietetics. 2018; 16 (2): 52-55. doi: 10.20953/1727-5784-2018-2-52-55 (in Russ.).
43. Albickaya Zh. V., Kasimova L. N. Age-related features of eating disorders in children with early childhood autism and childhood schizophrenia. Vestnik nevrologii, psikhiatrii i neyrokhirurgii = Bulletin of neurology, psychiatry and neurosurgery. 2017; 5-6: 5-10 (in Russ.).
44. Kem J. K., GeierD. A., Sykes L. K., GeierM. R. Relevance of Neuroinflammation and Encephalitis in Autism. Frontiers in Cellular Neuroscience. 2016; 9: 519. doi: 10.3389/fncel.2015.00519.
45. Forsythe P., Kunze W., Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Medicine. 2016; 14: 58. doi: 10.1186/sl2916-016-0604-8.
46. Suganya К., Koo B. S. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. International Journal of Molecular Sciences. 2020; 21 (20): 7551. doi: 10.3390/ijms21207551.
47. Gomez-Eguilaz M., Ramon-Trapero J. L., Perez-Martinez L., Blanco J. R. The microbiota-gut-brain axis and its great projections. Revista de Neuroloqia. 2019; 68 (3): 111-117. doi: 10.33588/m.6803.2018223.
48. Peterson С. T. Dysfunction of the Microbiota-Gut-Brain Axis in Neurodegenerative Disease: The Promise of Therapeutic Modulation With Prebiotics, Medicinal Herbs, Probiotics, and Synbiotics. Journal of Evidence-Based Integrative Medicine. 2020 Jan-Dee; 25: 2515690X20957225. doi: 10.1177/2515690X20957225.
49. Garcia-Gutienez E., Narbad A., Rodriguez J. M. Autism Spectmm Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Frontiers in Neuroscience. 2020 Oct 8; 14: 578666. doi: 103389/fnins2020578666.
50. Siniscalco D., Schultz S., Brigida A. L., Antonucci N. Inflammation and Neuro-Immune Dysregulations in Autism Spectmm Disorders. Pharmaceuticals (Basel). 2018; 11 (2): 56. doi: 10.3390/phl1020056.
51. Bjorklund G., SaadK., Chirumbolo S., Kem J. K., GeierD. A., GeierM. R., Urbina M. A. Immune dysfunction and neuroinflammation in autism spectmm disorder. Acta Neurobiologiae Experimentalis (Wars). 2016; 76 (4): 257-268. doi: 10.21307/ane-2017-025.
52. Stilling R. M., van de Wouw M., Clarke G., Stanton C., Dinan T. G., Cryan J. F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochemistry International. 2016; 99: 110-132. doi: 10.1016/j.neuint.2016.06.011.
53. Dalile В., Van Oudenhove L., Vervliet B., Verbeke K. The role of short-chain fatty acids in microbiota-gutbrain communication. Nature Reviews: Gastroenterology and Hepatology. 2019; 16 (8): 461-478. doi: 10.1038/s41575-019-0157-3.
54. Yarandi S. S., PetersonD. A., TreismanG. J., Moran T. H., Pasricha P. J. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. Journal of Neurogastroenterology and Motility. 2016; 22 (2): 201-212. doi: 10.5056/jnml5146.
55. Obrenovich M. E. M. Leaky Gut, Leaky Brain? Microorganisms. 2018; 6 (4): 107. doi: 10.3390/microorganisms6040107.
56. Abdellatif B., McVeigh C., Bendriss G., Chaari A. The Promising Role of Probiotics in Managing the Altered Gut in Autism Spectrum Disorders. International Journal of Molecular Sciences. 2020; 21 (11): 4159. doi: 10.3390/ijms21114159.
57. Tran S. M., Mohajeri M. H. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients. 2021; 13 (3): 732. doi: 10.3390/nul3030732.
58. Abdelli L. S., Samsam A., Naser S. A. Propionic Acid Induces Gliosis and Neuro-inflammation through Modulation of PTEN/AKT Pathway in Autism Spectrum Disorder. Scientific Reports. 2019; 9 (1): 8824. doi: 10.1038/s41598-019-45348-z.
59. Santocchi E., Guiducci L., Fulceri F., Billeci L., Buzzigoli E., Apicella F., Calderoni S, Grossi E., Morales M. A., Muratori F. Gut to brain interaction in Autism Spectrum Disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry. 2016; 16: 183. doi: 10.1186/sl2888-016-0887-5.
60. BachKnudsen К. E., Lrerkc H. N., Hedemann M. S., Nielsen T. S., Ingerslev A. K., Gundelund Nielsen D. S., Theil P. K., Purup S., Hald S., Schioldan A. G., Marco M. L., Gregersen S., Hermansen K. Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients. 2018; 10 (10): 1499. doi: 10.3390/nul0101499.
61. Peralta-Marzal L. N., Prince N., Bajic D., Roussin L., Naudon L., Rabot S., Garssen J., Kraneveld A. D., Perez-Pardo P. The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. International Journal of Molecular Sciences. 2021; 22 (18): 10052. doi: 10.3390/ijms221810052.
62. Zheng Z., Zhu T., Qu Y., Mu D. Blood Glutamate Levels in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. PLoS One. 2016; 11 (7): e0158688. doi: 10.1371/joumal.pone.0158688.
63. Baj А., Мою E., Bistoletti M., Orlandi V., Crema F., Giaroni C. Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences. 2019; 20 (6): 1482. doi: 10.3390/ijms20061482.
64. El-Ansary A. GABA and Glutamate Imbalance in Autism and Their Reversal as Novel Hypothesis for Effective Treatment Strategy. Autizm i narusenie razvitia (Autism and Developmental Disorders). 2020; 18 (3): 46-63. doi: 10.17759/autdd.2020180306.
65. Mazzoli R., Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Frontiers in Microbiology. 2016; 7: 1934. doi: 10.3389/fmicb.2016.01934.
66. Miladinovic T., Nashed M. G., Singh G. Overview of Glutamatergic Dysregulation in Central Pathologies. Biomolecules. 2015; 5 (4): 3112-3141. doi: 10.3390/biom5043112.
67. Heberling C., Dhmjati P. Novel systems modeling methodology in comparative microbial metabolomics: identifying key enzymes and metabolites implicated in autism spectrum disorders. International Journal of Molecular Sciences. 2015; 16 (4): 8949-8967. doi: 10.3390/ijmsl6048949.
68. Pema S., Alalwan T. A., Alaali Z., Alnashaba T., Gasparri C., Infantino V., Hammad L., Riva A., Petrangolini G., Allegrini P., Rondanelli M. The Role of Glutamine in the Complex Interaction between Gut Microbiota and Health: A Narrative Review. International Journal of Molecular Sciences. 2019; 20 (20): 5232. doi: 10.3390/ijms20205232.
69. Mittal R., Debs L. H., Patel A. P., Nguyen D., Patel K., O'Connor G., Grati M., Mittal J., Yan D., Eshraghi A. A., Deo S. K., Daunert S., Liu X. Z. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. Journal of Cellular Physiology. 2017; 232 (9): 2359-2372. doi: 10.1002/jcp.25518.
70. Koopman N., Katsavelis D., Hove A. S. T., Brul S., Jonge W. J., Seppen J. The Multifaceted Role of Serotonin in Intestinal Homeostasis. International Journal of Molecular Sciences. 2021; 22 (17): 9487. doi: 10.3390/ijms22179487.
71. Savino R., Carotenuto M., Polito A. N., Di Noia S., Albenzio M., Scarinci A., Ambrosi A., Sessa F., Tartaglia N., Messina G. Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway. Brain Sciences. 2020; 10 (9): 631. doi: 10.3390/brainscil0090631.
72. Ceppa F., Mancini A., Tuohy K. Current evidence linking diet to gut microbiota and brain development and function. International Journal of Food Sciences and Nutrition. 2019; 70 (1): 1-19. doi: 10.1080/09637486.2018.1462309.
73. Blagonravova A. S., Zhilyaeva T. V., Kvashnina D. V. Dysbiosis of intestinal microbiota in autism spectrum disorders: new horizons in search for pathogenetic approaches to therapy. Part 2. Gut-brain axis in pathogenesis of autism spectrum disorders. Journal of microbiology, epidemiology and immunobiology. 2021; 98 (2): 221-230. doi: 10.36233/0372-9311-83 (InRuss.).
74. Scriven M., Dinan T. G., Cryan J. F., Wall M. Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases. 2018; 6 (3): 78. doi: 10.3390/diseases6030078.
75. Marietta E., Horwath I., Taneja V. Microbiome, Immunomodulation, and the Neuronal System. Neurotherapeutics. 2018; 15 (1): 23-30. doi: 10.1007/sl3311-017-0601-4.
76. Muller C. L., Anacker A. M. J., Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience. 2016; 321: 24-41. doi: 10.1016/j.neuroscience.2015.11.010.
77. Fond G., Boukouaci W., Chevalier G., Regnault A., Eberl G., Hamdani N., Dickerson F., Macgregor A., Boyer L., Dargel A., Oliveira J., Tamouza R., Leboyer M. The “psychomicrobiotic” : Targeting microbiota in major psychiatric disorders: A systematic review. Pathologie-biologie (Paris) = Pathologists-biologists (Paris). 2015; 63 (1): 35-42. doi: 10.1016/j.patbio.2014.10.003.
78. Mangiola F., Ianiro G., Franceschi F., Fagiuoli S., Gasbarrini G., Gasbarrini A. Gut microbiota in autism and mood disorders. World Journal of Gastroenterology. 2016; 22 (1): 361-368. doi: 10.3748/wjg.v22.il.361.
79. Rhee S. H. Lipopolysaccharide: basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intestinal Research. 2014; 12 (2): 90-95. doi:10.5217/ir.2014.12.2.90.
Supplementary files
Review
For citations:
Grigoryants E.O., Chervinets Yu.V., Chervinets V.M., Rumyantseva E.S. Influence of intestinal dysbiosis on the course of authistic spectrum: literature review. Astrakhan medical journal. 2024;19(4):16-30. (In Russ.) https://doi.org/10.17021/1992-6499-2024-4-16-30