Preview

Astrakhan medical journal

Advanced search

ANTIBACTERIAL AND ANTIBIOFILM ACTIVITY OF EXTRACTS OF VAGINAL ISOLETS OF CORYNEBACTERIUM AMYCOLATUM

Abstract

Abstract. A serious global problem of the 21st century is the fight against bacterial infections caused by microorganisms with multiple drug resistance. Scientists are constantly searching for new therapeutic agents active against antibiotic-resistant strains. Secondary metabolites of microbial origin have historically proven their importance as a source of valuable compounds with antimicrobial activity. The genus Corynebacterium spp., which has recently attracted the attention of scientists due to the discovery of individual species with probiotic potential, has not been previously studied in this aspect. Purpose of the study: to study the antimicrobial and antibiofilm activity of extracts of vaginal isolates of Corynebacterium amycolatum. Material and research methods. The material for the study were extracts of three vaginal isolates of C. amycolatum ICIS 5, ICIS 9 and ICIS 53. The antimicrobial activity of the extracts was studied in vitro against 4 test strains of pathogenic microorganisms using the paper disk method. The effect of the extracts on pre-formed biofilms of the test strains was studied in 96-well polystyrene plates. The morphology of the test strain biofilms after pre-treatment with C. amycolatum extracts was studied using scanning electron microscopy. The experimental data were processed using variation statistics methods with the calculation of the arithmetic mean and its error (M±m) from 3 measurements. Research results. The antibacterial and antibiofilm activity of all tested C. amycolatum extracts was established against Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Enterococcus faecium ATCC 19434. The severity of antibacterial activity and the degree of destruction of the formed biofilm depended on the type of the tested microorganism. Scanning electron microscopy studies revealed a flat, scattered and unstructured architecture of the biofilms of the test strains. Conclusion. The data obtained open the prospect of studying the metabolic profile of C. amycolatum extracts to understand the nature and mechanism of the detected antibacterial and antibiofilm activity.

About the Authors

Irina Gladysheva
Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences
Russian Federation

Ph.D., Senior Researcher, Laboratory of Biomedical Technologies, Institute of Cellular and Intracellular Symbiosis



Sergey Cherkasov
Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences
Russian Federation

Doctor of Medical Sciences Corresponding Member of the Russian Academy of Sciences, Chief Researcher of the Laboratory of Biomedical Technologies



References

1. Tang K. W. K., Millar B. C., Moore J. E. Antimicrobial Resistance (AMR). British Journal of Biomedical Science. 2023; 28: 80:11387. doi: 10.3389/bjbs.2023.11387.

2. Prestinaci F., Pezzotti P., Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health. 2015; 109(7): 309-18. doi: 10.1179/2047773215Y.0000000030.

3. Monciardini P., Iorio M., Maffioli S., Sosio M., Donadio S. Discovering new bioactive molecules from microbial sources. Microbial Biotechnology. 2014; 7(3): 209-20. doi: 10.1111/1751-7915.12123.

4. Fouillaud M., Dufossé L. Microbial Secondary Metabolism and Biotechnology. Microorganisms. 2022; 10(1): 123. doi: 10.3390/microorganisms10010123.

5. Tiwari K., Gupta R. K. Rare actinomycetes: a potential storehouse for novel antibiotics. Critical Reviews in Biotechnology. 2012; 32(2): 108-32. doi: 10.3109/07388551.2011.562482.

6. Bernard K. A., Funke G. “Corynebacterium,” in Bergey's Manual of Systematics of Archaea and Bacteria. eds. Whitman W. B., Rainey F., Kämpfer P., Trujillo M., Chun J., Devos P., et al. (John Wiley & Sons, Inc;). 2020. P. 1–70.

7. Oliveira A., Oliveira L. C., Aburjaile F., Benevides L., Tiwari S., Jamal S. B., Silva A., Figueiredo H. C. P., Ghosh P., Portela R. W., Azevedo V. A-D. C., Wattam A.R. Insight of genus Corynebacterium: ascertaining the role of pathogenic and non-pathogenic species. Frontiers in Microbiology. 2017; 12:8:1937. doi: 10.3389/fmicb.2017.01937.

8. Hardy B. L., Dickey S. W., Plaut R. D., Riggins D. P., Stibitz S., Otto M., Merrell D. S. Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy. mBio. 2019; 10(1): e02491-18. doi: 10.1128/mBio.02491-18.

9. Lappan R., Peacock C. S. Corynebacterium and Dolosigranulum: future probiotic candidates for upper respiratory tract infections. Microbiology Australia. 2019; 40(4): 172-177. https://doi.org/10.1071/MA19051.

10. Stubbendieck R. M., May D. S., Chevrette M. G., Temkin M. I., Wendt-Pienkowski E., Cagnazzo J., Carlson C. M., Gern J. E., Currie C. R. Competition among nasal bacteria suggests a role for siderophore-mediated interactions in shaping the human nasal microbiota. Applied and Environmental Microbiology. 2019; 85(10): e02406-18. doi: 10.1128/AEM.02406-18.

11. Wysocki P., Kwaszewska A. K., Szewczyk E. M. Influence of substances produced by lipophilic Corynebacterium CDC G1 ZMF 3P13 on the microorganisms inhabiting human skin. Medycyna doswiadczalna i mikrobiologia. 2011; 63(1): 45-52.

12. Gladysheva I. V., Cherkasov S. V. Antibiofilm activity of cell-free supernatants of vaginal isolates of Corynebacterium amycolatum against Pseudomonas aeruginosa and Klebsiella pneumoniae. Archives of Microbiology. 2023; 205(4): 158. doi: 10.1007/s00203-023-03498-9.

13. Gladysheva I.V., Cherkasov V.S., Khlopko Y.A., Plotnikov A.O. Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates. Microorganisms. 2022; 10(2): 249. doi: 10.3390/microorganisms10020249.

14. Gladysheva I. V., Chertkov K. L., Cherkasov S. V., Kataev V. Y., Valyshev A. V. Probiotic Potential, Safety Properties, and Antifungal Activities of Corynebacterium amycolatum ICIS 9 and Corynebacterium amycolatum ICIS 53 Strains. Probiotics and antimicrobial proteins. 2023; 15(3): 588-600. doi: 10.1007/s12602-021-09876-3.

15. Stroganova E. A., Gladysheva I. V., Cherkasov S. V. Product for production of organic compounds having antibacterial and antioxidant activity. Patent RF, no. 2802776. 2023. (In Russ.).

16. Egorov N. S. Fundamentals of the doctrine of antibiotics. Moscow: Moscow State University Publishing House: Science; 2004. 528 p. (In Russ.).

17. Dalili D., Amini M., Faramarzi M. A., Fazeli M. R., Khoshayand M. R., Samadi N. Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity. Colloids and Surfaces B: Biointerfaces. 2015; 135: 425-432. doi: 10.1016/j.colsurfb.2015.07.005.

18. Menberu M. A., Liu S., Cooksley C., Hayes A. J., Psaltis A. J., Wormald P-J., Vreugde S. Corynebacterium accolens has antimicrobial activity against Staphylococcus aureus and methicillin-resistant S. aureus pathogens isolated from the sinonasal niche of chronic rhinosinusitis patients. Pathogens. 2021; 10(2): 207. doi: 10.3390/pathogens10020207.

19. Zhang Q-Y., Zhi-Bin Y., Meng Y-M., Hong X-Y., Shao G., Ma J-J., Cheng X-R., Liu J., Kang J., Cai-Yun Fu C-Y.. Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research. 2021; 8(1) :48. doi: 10.1186/s40779-021-00343-2.

20. Abrehem K., Zamiri I. Production of a bacteriocin, ulceracin 378, by Corynebacterium ulcerans. Antimicrobial Agents and Chemotherapy. 1983; 24(2): 262-7. doi: 10.1128/AAC.24.2.262.

21. Pátek M., Hochmannová J., Nešvera J., Stránský J. Glutamicin CBII, a bacteriocin-like substance produced by Corynebacterium glutamicum // Antonie Van Leeuwenhoek. 1986; 52(2): 129-40. doi: 10.1007/BF00429316.

22. Pashou E., Reich S. J., Reiter A., Weixler D., Eikmanns B. J., Oldiges M., Riedel C. U., Goldbeck O. Identification and Characterization of Corynaridin, a Novel Linaridin from Corynebacterium lactis. Microbiology Spectrum. 2023; 11(1): e0175622. doi: 10.1128/spectrum.01756-22.

23. Rodrigues L., Banat I. M., Teixeira J., Oliveira R. Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy. 2006; 57(4): 609-18. doi: 10.1093/jac/dkl024.

24. Joshi-Navare K., Prabhune A. A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. BioMed Research International. 2013; 2013: 512495. doi: 10.1155/2013/512495.

25. Díaz De Rienzo M.A., Banat I.M., Dolman B., Winterburn J., Martin P. J. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. New Biotechnology. 2015; 32(6): 720-6. doi: 10.1016/j.nbt.2015.02.009.

26. Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. M. Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Letters in Applied Microbiology. 2007; 45(6): 686-91. doi: 10.1111/j.1472-765X.2007.02256.x.

27. Muthukamalam S., Sivagangavathi S., Dhrishya D., Rani S. R. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria. Brazilian journal of microbiology. 2017; 48(4): 637-647. doi: 10.1016/j.bjm.2017.02.007.

28. Martins P. C., Bastos C. G., Granjeiro P. A., Martins V. G. New lipopeptide produced by Corynebacterium aquaticum from a low-cost substrate. Bioprocess and Biosystems Engineering. 2018; 41(8): 1177-1183. doi: 10.1007/s00449-018-1946-8.


Review

For citations:


Gladysheva I., Cherkasov S. ANTIBACTERIAL AND ANTIBIOFILM ACTIVITY OF EXTRACTS OF VAGINAL ISOLETS OF CORYNEBACTERIUM AMYCOLATUM. Astrakhan medical journal. 2025;20(2).

Views: 3


ISSN 1992-6499 (Print)